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Abstract

The term trajectory-planning has been used to refer to the process of determining
the time-history or "joint trajectory” of each joint variable corresponding to a
specified trajectory of the end-effector of the manipulator. The trajectory-planning
problem, in its original form, was solved as a purely kinematic problem. The
drawback of this approach is that there is no guarantee that the actuators can deliver
the effort necessary to track the planned trajectory. Furthermore, feedback-controller
synthesis was addressed as a separate problem and without consideration of the
actuator constraints. Later studies, which were concerned with the development of
high-speed and high-precision manipulators did take actuator constraints into
account but the control strategy used was primarily based on the classical open-loop
optimal contro! approach. The performance of the robot manipulator resulting from
the implementation of such an open-loop approach is extremely sensitive to
uncertainty in the dynamic model and disturbances which may act on the
manipulator. The addition of a feedback controller may not resolve this problem
because the feedback control law is usually synthesized without taking the actuator
constraints into account. To overcome these limitations, we have developed a
motion planning approach which addresses the kinematics, dynamics and feedback-
control of a manipulator in a unified-framework. Actuator constraints are taken into
account explicitly and a-priori in the synthesis of the feedback control law. Therefore
the result of applying the motion planning approach described in this thesis is not
only the determination of the entire set of joint trajectories but also a complete
specification of the feedback-control strategy which would yield these joint
trajectories without violating actuator constraints.

The motion planning framework is developed in an optimization setting, which
allows the analyst to (i) exploit any available freedom in the task specification of the
manipulator, and (ii) exploit (kinematic) redundancy in the case of kinematically
redundant manipulators. The effectiveness of the unified motion planning approach
is demonstrated on two problems which are of practical interest in manipulator
robotics. In the first problem feedback-controlled motions which minimize task time
are planned for non-redundant manipulators. The second problem, which has useful
applications in Space Robotics, addresses the use of kinematic redundancy in
planning motions which minimize the magnitude of the reactions transmitted to the
base of a manipulator.
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Chapter 1

Introduction

1.1 Motivation

This thesis is about the development and application of a unified motion planning
approach for robotic manipulators. In order to motivate the need for such a unified
approach, it is useful to first briefly review existing motion-planning approaches.
Traditionally, the term trajectory-planning has been used to refer to the process of
determining the time-history or "joint trajectory” of each joint variable corresponding to a
specified trajectory of the end-effector of the manipulator. The trajectory-planning
problem, in its original form, was solved as a purely kinematic problem. The drawback of
this approach is that there is no guarantee that the actuators can deliver the effort
necessary to track the planned trajectory. Furthermore, feedback-controller synthesis was
addressed as a separate problem and without consideration of the actuator constraints.
Later studies, which were concerned with the development of high-speed and high-
precision manipulators did take actuator constraints into account but the control strategy
used was based on the classical open-loop optimal control approach or variations thereof.
The performance of the robot manipulator resulting from the implementation of such an
open-loop approach is extremely sensitive to uncertainty in the dynamic model and
disturbances which may act on the manipulator. The addition of a feedback controller
may not resolve this problem because the feedback control law is usually synthesized
without taking the actuator constraints into account. To overcome these limitations, we
have developed a motion planning approach which addresses the kinematics, dynamics
and feedback-control of a manipulator in a unified-framework. Actuator constraints are

taken into account explicitly and a-priori in the synthesis of the feedback control law.



Therefore the result of applying the motion planning approach described in this thesis is
not only the determination of the entire set of joint trajectories but also a complete
specification of the feedback-control strategy which would yield these joint trajectories
without violating actuator constraints. Furthermore since the motion planning framework
is developed in an optimization setting, one can plan motions and synthesize control laws

which are optimal in some useful sense.

1.2 Contributions of the Research
The primary contributions of this research are the development, implementation and
application of a unified motion planning approach for redundant and non-redundant

manipulators. More specifically the contributions of this research are as follows:

1. The unified motion planning approach simultaneously plans the
manipulator trajectory and synthesizes a feedback control law which does
not violate actuator constraints.

2. Multi-criterion optimization is used as an integral part of the framework to
plan trajectories which optimize dynamic performance.

3. The incorporation of optimization in the motion planning approach allows
the analyst to (i) exploit any available freedom in the task specification of
the manipulator, and (ii) exploit (kinematic) redundancy in the case of
kinematically redundant manipulators.

4. The unified motion planning approach, by avoiding the drawbacks of most
commonly used motion planning approaches, allows one to plan realizable
motions in a relatively straightforward manner.

1.3 Overview of the Contents

The thesis is organized as follows. In Chapter 2 we state the goals of motion
planning and conclude with a formal definition of motion planning. The unified motion
planning approach, which underlies the present research, is developed in Chapter 3.
Existing methods for trajectory planning and controller synthesis are first surveyed and
then used to motivate the proposed motion planning approach. The basic building blocks
in the unified approach are then described. The final section of Chapter 3 describes the
proposed motion planning approach which integrates trajectory planning and feedback

controller synthesis to plan feasible and optimal manipulator motions.

Chapter 4 deals with the application of the unified motion planning approach to non-
redundant manipulators. After discussing the specifications of end-effector tasks and the



parameterization of end-effector trajectories, a procedure is developed for planning
feasible and optimal motions for non-redundant manipulators. The effectiveness of the
unified motion planning approach is then demonstrated by using it to plan a feedback-

controlled motion which minimizes the task time.

Chapter 5 is the redundant manipulator counterpart of Chapter 4. Special attention is
paid to the proper resolution and parametric representation of kinematic redundancy. As
a demonstration of the usefulness of the unified motion planning approach we address the
problem of minimizing the magnitude of the reactions transmitted to the base of a
manipulator with one excess (or redundant) degree of freedom; the base-reaction
minimization problem has useful applications to manipulators operating in "zero-gravity"

environments in space.

An issue which must be confronted in using redundant manipulators is whether they
are really effective in improving dynamic peformance. This issue is important in its own
right and is studied in Chapter 6. In this chapter we also discuss certain issues which
must be considered in the implementation of the unified motion planning approach.
Finally, in Chapter 7 we summarize the work described in this thesis, draw some

conclusions from the investigation and make some suggestions for future research.



Chapter 2

Definition of the Motion Planning Problem

2.1 Overview

In robotic manipulator work, trajectory planning refers to the process of obtaining
the joint trajectories corresponding to a given task specification for the end-effector. We
are interested in planning motions for high-performance manipulators, i.e. manipulators
which must follow prescribed trajectories at very high speed and with very high
accuracy. In order to ensure that the motion plan is robust, i.e. insensitive to
uncertainties in the model and disturbances which might act on the manipulator, the
manipulator must be feedback-controlled. Therefore in the present work we use the term
motion planning to describe the planning of the optimal joint trajectories and also the
determination of the optimal gains in a prescribed feedback control strategy. The
underlying philosophy of the present work is that proper motion planning should

simultaneously address both trajectory planning and controller synthesis.

In our motion planning problem, we make the assumption that the structure of the
manipulator and the structure of the controller are known a priori. The controller
parameter vector, denoted by P,, consists of all the unknown parameters or "gains" of the
controller strategy. For the present, it is convenient to regard motion planning very
simply as the determination of the combination of the optimal manipulator trajectory and

the optimal controller parameter vector P,.

The rest of the chapter is devoted to a more detailed discussion of motion-planning

culminating with a formal statement of motion- planning in Section 2.4.



2.2 Primary Goal of Motion Planning
Before we state the primary goal of motion planning, we will first need to define task

specifications, end-effector trajectory, and joint trajectory.

Task specifications are high-level descriptions of the desired end-effector motion
(xt)). For example, if the task is for the end-effector of the manipulator to pick up an
object at point A and place it at point B, then the task specifications would be the
positions of points A and B in a coordinate system {U} which is fixed to the base of the

manipulator.

If x,, x,, and x3 denote the Cartesian coordinates of the reference point on the end-

effector in the coordinate system {U} fixed to the base of the manipualtor, then

x=[xy,%p,%3]7. 2.1)

is the vector which denotes the position of the end-effector and x(-) is called the end-

effector trajectory or task-space trajectory. For a planar manipulator, x3 = 0.

E(x.x)

Fig.2.1 A Planar m Degree-of-Freedom Manipulator
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Consider an m degree-of-freedom manipulator with m revolute joints as shown in
Fig. 2.1. Let g¢; denote the joint variable at joint i. For an m degrees-of-freedom
manipulator, the joint variable vector ge R™ can be defined as

q=[q1’q2!""’qm]T' (2.2)

The time-history g, (i=1,2,...m), of each joint variable is called the joint trajectory.
The vector of joint trajectories for all the joints is called the joint trajectory vector and is
denoted by ¢(-). (In the sequel g(-) will be simply referred to as the joint trajectory rather

than the joint trajectory vector.)

Before we define the primary goal of the manipulator, it is important that we identify
the freedom provided by the task specifications and/or by the kinematic redundancy. In
the following discussion we will illustrate the freedom that one can exploit in motion

planning problems.

If the number of degrees of freedom (m) is greater than the minimum number of
degrees of freedom (n) required to perform a task, then the manipulator is called a
kinematically redundant manipulator with p=m-n degrees of kinematic redundancy.
When p is equal to zero, the manipulator is a non-redundant manipulator. The kinematic
relationship between the end-effector position x and the joint variable vector ¢ can be
described by a nonlinear mapping called the forward kinematic mapping y : R — R"

which is expressed as follows:
V(G192 o) = (XpeeeXp)- (2.3)

The "end-effector” velocity x is related to the joint velocity vector ¢ by the following

well known linear relationship [10]:
x.'=Jq.v (2.4)

where J = @ grom i the so-called Manipulator Jacobian matrix.

d¢

Using Eq. (2.4), we obtain the following linear relationship between the desired joint

velocity ¢4 and the desired end-effector velocity x4



ig=Jdg 2.5)

For non-redundant manipulators, J is square and, in general, invertible and g4 can be
uniquely obtained by premultiplying x4 by J-1. Therefore, it is clear that the freedom that
one can exploit in trajectory planning comes only from any available freedom in the task

specification of the end-effector trajectory x,.

However, in the case of a redundant manipulator, since m>n, there are in general an
infinite number (_P) of joint velocity vectors ¢, that satisfy Eq. (2.5). This implies that
there are an infinite number of joint trajectories that can be used to achieve the task

regardless of whether there is any freedom in the task specifications.

In reality, not all of the desired joint trajectories g4-) computed from Eq. (2.5) are
realizable due to the fact that some of the trajectories would require torques which exceed
the capabilities of the actuators. The purpose of motion planning is to determine an
appropriate joint trajectory vector g4 and the paramters in the controller, such that, under
the actuator constraints the primary goal of the task, which is stated below, is achieved.

The primary goal of motion planning is to exploit the freedom in the end-effector
trajectory, the joint-space trajectory, and the choice of the magnitudes of the controller
parameters to plan a trajectory for which the associated actuator inputs do not exceed
their bounds.

2.3 Secondary Goal of Motion Planning
In addition to satisfying the primary goal of motion planning, we are also interested
in exploiting the freedom in both the task specifications and the feedback control law to

achieve an additional dynamic performance objective.

If 7 denotes the scalar which is a measure of dynamic performance, then / can be

expressed in the well-known general form

where k and @ denote functions defined by the analyst and ¢, denotes the final time.



In certain applications where we are only concerned with the peak value of a

function A, we can define I as the maximum value of a function A(-) over a time interval:

I=max {h(g.9.9)}. 2.7)

As will be seen in the sequel, the general performance index defined in Eq. (2.6) can
be used as a measure of dynamic performance in several problems of practical interest,

for example, the base reaction minimization problem and the minimum-time problem.

The secondary goal of motion planning is to plan a trajectory which (also) minimizes

the performance index (2.6) or (2.7).

2.4 Motion Planning
Having defined the primary goal and secondary goal of our motion planning
approach, we are in a position to formally state the motion planning problem for a

feedback-controlled manipulator:

Determine the desired joint trajectory g4 and controller parameter vector P, such
that the actual end-effector trajectory x(1)

(1) satisfies the task specifications;

(ii) is robust (i.e. achieved by a feedback control strategy);

(iii) does not violate actuator constraints;

(iv) optimizes an additional measure of dynamic performance.

The first three motion requirements are related to the satisfaction of the primary goal of

motion planning while the last motion requirement is used to achieve the secondary goal.

Having defined the motion-planning problem, the next step, of course, is to describe
the approach that we have developed for obtaining a good motion plan. This is the

subject of the next chapter.



Chapter 3

Unified Motion Planning Approach

3.1 Introduction

In this chapter, we will motivate the need for the unified motion planning approach
and also give an overview of this approach. In Section 3.2, we point out the drawbacks
of the conventional motion planning approaches and identify some of the research issues
that we have to resolve. In Section 3.3, we survey relevant research in the areas of
motion planning and comment on the strength and limitations of these works. Finally in
Section 3.4 we describe the Unified Motion Planning Approach and the building blocks

which are essential to its formulation.

3.2 Why do we need another motion planning approach?

There have been many studies addressing different aspects of motion planning and
controller design for robotic manipulators. Some of these studies were devoted to
solving purely kinematic problems, for example, determining inverse kinematic solutions
for manipulators of different kinematic structures [1,7,10] or developing useful
representations for joint-space trajectories such as the 4-3-4 trajectory and the five-cubic
spline trajectory [10,15]. There are also numerous studies which address the dynamics of
a manipulator, for example, Luh-Walker-Paul’s algorithm [1] for computing the inverse
dynamics of a manipulator and Hollerbach’s recursive Lagrangian formulation of
dynamic equations [1,15]. There are also numerous studies addressing the design of
feedback controllers for manipulators [1,10,12,15].

Since there are so many studies in the area of motion planning, a natural question

one might ask is why we need another motion planning approach.
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To answer this question, we will first look at three classes of motion planning
approaches proposed in the literature. The purpose of the following discussion is to
present a general overview of the conventional approaches, to point out the drawback of
these approaches and to thereby motivate some of the research issues addressed in this

study. In Section 3.3, we will present a survey of the conventional approaches.

The first class of motion planning approaches is the purely kinematic approach
[7,14,16,26,37). The objective of these approaches is to determine a desired joint
trajectory vector g, for a given task specification. To guarantee that the planned motions
do not require torques which exceed the bounds on actuator efforts some researchers have
imposed kinematic constraints such as speed limits and acceleration limits on the
allowable solutions. However, these kinematic constraints are not derived from the
equations of motions of a manipulator and therefore the major drawback of this approach
is that even though the kinematic constraints are satisfied, the trajectory may still require

torques that are in excess of what the actuator can deliver.

To take actuator constraints into account, some researchers proposed the constrained
open-loop approach for non-redundant manipulators [6,19,39]. In these approaches, the
open-loop torque vector, u’, which is required to achieve the desired end-effector
trajectory is computed and used as the "control" input. The major drawback of this
approach is that it is open-loop and therefore non-robust, i.e. the performance of the

manipulator is sensitive to uncertainties in the model and disturbances.

To remedy the robustness problem in the above approach, an obvious solution is to
simply add a feedback controller to the constrained open-loop approach to make it robust
[12]. Based on this rationale, the controller effort vector u would consist of two parts: u*
and u. The first part of the controller effort, 4°, is computed based on the constrained
open-loop approach. The second part of the controller effort, u comes from the feedback
control strategy which is usually designed without considering the actuator constraints.
The major drawback of this approach is that it is unclear how one would distribute the
actuator constraint vector u,,,, between u* and u such that u = u® + u is always less than

the actuator constraint vector, U

There is therefore a need for a motion planning approach which plans a feedback
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controlled trajectory which does not violate the actuator constraints. The approach
developed in this thesis uses a feedback control strategy which a-priori takes actuator
constraints into account, thereby ensuring that the magnitudes of the actuator torques
based on the control law do not exceed the (specified) bounds. In addition, our approach
allows us to exploit any freedoms available in the manipulator task specifications and the
freedoms available in the magnitudes of the controller parameters to simultaneously plan

a trajectory and synthesize a feedback control law to optimize dynamic performance.

3.3 Survey of Related Research

Having addressed the need for a more complete motion planning approach, we will
now survey some of the related research, specifically in the areas of trajectory planning,
controller design and dynamic performance optimization of redundant and non-redundant
manipulators. The purpose of this survey is to explore the strength and shortcomings of
the existing studies and highlight some of the tools that we will use from these studies for

the development of the unified motion planning approach.

3.3.1 Trajectory Planning of Manipulators

In this section we review studies that only address the kinematics of a manipulator!.
A standard problem is the determination of the joint-trajectory for a completely or
partially specified end-effector trajectory. We will discuss this problem separately for

non-redundant and redundant manipulators.

3.3.1.1 Non-redundant Manipulators

Many researchers have investigated approaches for planning straight-line end-
effector trajectories. Paul [31] proposed an approach that breaks the end-effector
trajectory into a number of straight-line segments. The points where these segments meet
are called the cartesian knot points. These cartesian knot points are then mapped into
corresponding joint-space configurations. A quadratic polynomial is then used to connect

these joint configurations to form a smooth joint trajectory.

Fu et al. [15] presented various joint-space trajectory interpolations such as the 4-3-4

1In Section 3.3.2, we will survey trajectory planning studies which consider the dynamics of a
manipulator.
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joint trajectory, 3-5-3 cubic joint trajectory and 5-cubic spline trajectory. These
representations enable one to obtain smooth joint trajectories for pick and place

operations.

Lin et al. [24] formulated an off-line approach for constructing a cubic-spline
polynomial joint trajectory to fit selected cartesian knot points. They developed an
algorithm that minimizes the total traveling time of the manipulator by varying the time
intervals of the cubic polynomials. In their studies, they imposed kinematic constraints
on the joint velocity and joint acceleration. One should note that in this study, the
kinematic constraints are assigned arbitrarily instead of being derived from the equations

of motion and the actuator constraints.

In all the above studies, there is no guarantee that the joint trajectory obtained from
the trajectory planning algorithm can be executed successfully with or without feedback
as there is no consideration of the dynamics of the manipulator and the actuator

constraints in the analysis.

3.3.1.2 Redundant Manipulators

In the majority of the redundant manipulator studies, the problem of interest is to
exploit the freedom available in the joint trajectory to achieve an additional task while the
end-effector performs the primary task of tracking a prescribed end-effector trajectory.

An important research issue in the kinematics of redundant manipulators is referred
to in the literature as redundancy resolution. Redundancy resolution refers to the process
of selecting a joint-space solution from the _P possible jont-space solutions for a

redundant manipulator with p degrees of redundancy.

To represent kinematic redundancy, there are two common approaches - the pseudo-
inverse and the partitioned Jacobian - which are derived from the "velocity" relationship
(Eq. (2.4)) which relates joint-velocity and end-effector velocity. The pseudo-inverse
approach has been presented and discussed extensively in the literature. Therefore, for a
more in-depth treatment of the subject of pseudo-inverse representation, we will refer the
reader to [20] which provides a good review on this topic. The partitioned-Jacobian
approach is relatively less popular and has only been used in recent years. In Section
5.2.1, we provide a detailed description of the partitioned Jacobian approach. Other
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approaches for representing kinematic redundancy are given in [3,7,35,36,37,42].

However, these approaches are not general and therefore of limited usefulness.

Depending on the way in which kinematic redundancy is resolved, the resulting
approaches for utilizing of the freedom in the joint trajectory are quite different.
Therefore, we will divide the studies in redundant manipulators into three classes -
pseudo-inverse based approaches, partitioned-Jacobian based approaches, and other types

of representations.
A. Pseudo-inverse Approach

Liegeois [23] was one of the first researchers that studied the trajectory planning
problem for redundant manipulators. He developed a formulation, based on the pseudo-
inverse of the Jacobian, to avoid the joint limits. He proposed the following velocity

equation that can be numerically integrated to obtain the joint trajectories ¢:
g=J*x+aVH, (3.1)

where J* is the pseudo-inverse of the Jacobian and VH is the gradient of a smooth
function H(q) that characterizes a secondary goal such as joint limit avoidance. H(gq)
takes the form of:

—Qa:
W%y i=1,2,,0,m) (3.2)
qiv

—
i

1 6
H(q)=-6-g,‘{

where g;;; and g;; are the upper and lower limits of ¢; and g; is given by the following

equation:
a;=(qu+ag )2, (i=1,2,..,m). (3.3)
Yoshikawa [44] presented a similar but more general approach to avoid joint limits,

avoid obstacles and increase the manipulatability2 (sic) of a manipulator. He also

experimentally verified his algorithm by implementing it on the 7 d.o.f. Ujibot to avoid

2The measure of manipulatability equals zero when a manipulator is at singular state and increases as the
manipulator is moving away from the singular configurations [44].
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an obstacle. However, the obstacle avoidance scheme would only work in an

environment with one obstacle.

Maciejewski [26] proposed an approach for determining the joint trajectories that
avoid moving obstacles. In his approach, if a particular link is close to an obstacle, the
nullspace solution for the joint velocity equation is then utilized to move the link away

from the obstacle based on a desired velocity vector which is normal to the obstacle.
B. Partitioned Jacobian Approach

In this section, we will discuss those trajectory planning approaches that use the
partitioned Jacobian approach. These studies, like those discussed above, do not consider

the actuator constraints nor the dynamics of a manipulator.

Fenton [14] first introduced the generalized inverse approach which partitions the
Jacobian matrix into two submatrices - a non-redundant Jacobian matrix J,, and a
redundant Jacobian matrix J,. The partitioning of the Jacobian matrix is made possible
by observing the fact that some of the joint variables can be treated as independent free
variables that can be utilized, for example, in optimizing dynamic performance. Chung
et al. [8] applied this approach to minimize the magnitude of the reactions transmitted to
the base of a manipulator (for more details, see Sections 3.3.2); to differentiate this
representation from the pseudo-inverse representation3, they renamed this approach the
partitioned-Jacobian representation for kinematic redundancy. The approach developed

by Ghosal [16] is essentialy the same as the partitioned Jacobian representation.

Other studies that utilize the partitioned-Jacobian representation are discussed in
Section 3.3.2.

C. Other Techniques

In this section, we discuss approaches that are not based either on the pseudo-inverse

matrix or the partitioned-Jacobian approaches.

Sciavicco et al. [37] presented an approach for the inverse kinematic problem of

3The pseudo-inverse is sometimes called the generalized inverse [20,33).
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redundant manipulators with joint limits in a workspace containing obstacles. Treating
the inverse kinematic problem as a closed-loop control problem, he was able to generate
the desired joint trajectory for a prescribed end-effector trajectory. The controller gains
of the "closed-loop algorithm" are computed from an appropriate Lyapunov function.
One of the drawbacks of this approach is that the accuracy of the resulting open-loop

end-effector trajectory x,; is dependent on the convergence rate of the Lyapunov function.

Seraji [36] developed an approach which augments the forward kinematics with
some task-related kinematic functions. One such kinematic function specifies a desired
arm posture which might be important when the motion is constrained due to workspace
obstacles. The number of forward kinematics equations are augmented by such
kinematic functions until the total number of equations is equal to the number of joint
variables. The joint-space trajectories can then be obtained as in the non-redundant case.
The drawback of this approach is that only a limited number of problems can be solved
due to fact that the user-defined kinematic functions are functions of the manipulator

configuration g only.

Besides the above approaches, many researchers have developed approaches based
on various mathematical techniques such as dynamic programming [42] and graph-search
techniques [3]. However, these approaches are not popular due to large memory

requirements and intensive computational requirements.

3.3.2 Dynamic Performance Optimization

In this section, we review relevant research where trajectory planning is based on
optimizing the dynamic performance of a manipulator. This class of problems differs
from the trajectory planning problems that we discussed in Section 3.3.1 where the

dynamics of the manipulator is not considered in the analysis.

We will first discuss a study in non-redundant manipulators. In trajectory planning
for non-redundant manipulators, the only freedom one can exploit is in the end-effector
trajectory. Schmitt el al. [38] developed a global approach that determines the optimal
joint trajectory for an unconstrained, open-loop non-redundant manipulator. The
dynamic performance considered in this problem is to minimize the energy consumed

during the execution of a pick-and-place task. Instead of minimizing the energy directly,
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they posed a minimization problem with a cost function which is a sum of the magnitudes
of the joint torques. In their approach, the Raleigh-Ritz method is used to approximate
the unknown optimal joint motions with a finite number of weighted shape functions.
The necessary conditions for the optimal solutions are then obtained by equating the
partial-derivative of the cost function with respect to each of the weights to zero. The
necessary conditions are then described by a set of non-linear algebraic equations which

can be solved by standard numerical techniques.

In redundant manipulator studies, there have been a few approaches proposed for
exploiting the freedom in the joint trajectory to achieve optimal dynamic performance.
Most of the studies in this area are essentially open-loop. Suh and Hollerbach [18]
proposed a local pseudo-inverse based approach for minimizing the magnitudes of joint
torques. The results of their study show that for most cases their approach produces
acceptable solutions. However, for trajectories where the end-effector velocity is very
high, the local approach produces very high torques. In their later study [40], they
proposed a global approach that optimizes a cost function which is an integral of the
magnitudes of the joint torques. They also compared the solutions of the local approach
and global approach. In their findings, the global approach out-performed the local
approach for all the test cases. But the drawback of the global approach is that the
formulation is very complicated and requires the user to solve a two-point boundary
value problem for a set of fourth order ordinary differential equations. In view of this
difficulty, Hirose and Ma [17] proposed a local approach (based on the partitioned
Jacobian representation) that places limits on the joint accelerations. For most test cases,
this approach is able to overcome the high torque problem encountered by Hollerbach

and Suh. However, the approach does not take actuator constraints into account.

The common theme of all the above redundant manipulator studies is to minimize
the magnitudes of the joint torques. Several other studies were also conducted to exploit
kinematic redundancy in minimizing the magnitude of the base reactions, an important
issue in microgravity robotic operations. deSilva et al. [11] first developed a local
approach to minimize a cost function which is a sum of the weighted magnitudes of the
base force and the base moment. The kinematic redundancy is resolved using the

partitioned Jacobian approach : the joint variables are divided into a vector of redundant



17

joint variables g, and a vector of non-redundant joint variables g,,,. The joint trajectory is
then broken into a number of segments. For each segment, each joint trajectory is
approximated by a polynomial with unknown coefficients. These coefficients are then
determined by optimizing a static cost function which is a measure of the magnitude of
the base reactions at the end of each time segment. The shortcoming of this local
approach is that it results in a base force which has relatively large peak magnitude.
Quinn and Chen [32] used the local approach developed by deSilva to study manipulators
with up to three degrees of kinematic redundancy. Their results showed that by
incorporating more degrees of kinematic redundancy the base reactions can be further
reduced. Chung and Desa [9] compared the above local approach with a global approach
in which the redundant joint variables are approximated by three segments of third or
fourth order polynomials. The results of their study showed that with a relatively small
number of coefficients, the global approach can reduce the peak magnitude of the base
force observed in the local approach, but is not effective in reducing the magnitude of the
base moment. This is due to the fact that a relatively small number of coefficients are

used to parameterize the overall behavior of the joint trajectory.

It is important to point out that all the above approaches do not take actuator
constraints into account and the dynamic performahce optimized is for a manipulator

without feedback control.

3.3.3 Controller Synthesis
We will briefly survey some of the more commonly used techniques for controller
synthesis, point out their drawbacks and finally present an overview of the control

synthesis approach used in this thesis.

One common controller synthesis method which we will call the local linearization
control approach [12] designs a closed-loop control law for a linearized dynamic system

by using linear optimal control theory.

According to this scheme, the control input vector # to the manipulator can be
separated into two parts: the nominal control input vector u* and the (corrective)

feedback control input vector u. The control input u is therefore given by
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u=u"+u. (3.4)

The nominal input vector u* can be obtained from the nominal model of the
manipulator (plant) and the nominal trajectory. There are several studies that address the
problem of obtaining the optimal nominal input vector 4" for a manipulator based on a
dynamic performance criteria. This class of problems, usually called the optimal control
problem for a manipulator, is posed as an open-loop, constrained nonlinear optimization

problem.

Bobrow et aJ [6] studied the time-optimal control problem of a non-redundant
manipulator with the end-effector trajectory specified in space but not in time. The path
of the manipulator is first parameterized in terms of a variable called x (distance along the
path). Then, by imposing the torque constraints, the upper limit and lower limit of the
acceleration X can be obtained as functions of x and x. The optimal acceleration profile is
obtained from the switching curves in the X - x phase plane. The optimal acceleration
profile is the profile that produces the largest velocity profile possible in the x-x¥ plane.
Once the optimal acceleration profile is obtained, the actual torque profile for each joint
can then be obtained. Independently, Shin and McKay [39] have also developed a
similar algorithm based on the phase-plane concept to solve the minimum-time control
problem for a non-redundant manipulator. The results obtained by Dubowsky and Shin
specify the nominal torque vector 1" that can be used to perform a task in a minimum-
time manner for a manipulator. Unfortunately, this approach is quite complicated and

can only solve a small class of problems (such as the minimum-time problem).

The feedback control input uis given, for example, by a state-feedback control law:
u=-Kx, 3.5)

where K is the gain matrix and x is the state variable vector of the linearized system
which is obtained by linearizing the nonlinear system about the nominal trajectory [12].
The gain matrix K can be obtained by using classical linear optimal regulator (LQR)
theory [22].

The shortcoming of the local linearization control scheme is that the actuator
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constraints cannot be taken into account directly in the design of a closed-loop controller.
Therefore, the control input vector u obtained by Eq. (3.4) may violate the actuator
constraints. This means that the actuators would not be able to supply the control efforts
which are necessary to obtain the desired performance; as a result the actual performance

could be very unsatisfactory.

The other approach which has also attracted a lot of attention is global feedback
linearization [10] which also partitions the control effort into two parts. One part of the
control effort is used to "cancel” the nonlinear terms so that the system is "feedback
linearized" and decoupled. The other part of the control effort is error driven which
ensures tracking in the face of disturbances and modeling errors. The major drawback of
this approach is that since actuator constraints are not explicitly taken into account in the
synthesis of the control law, the control effort computed using the above scheme will in

general violate the actuator constraints resulting in unsatisfactory performance.

Traditional optimal control theory [22] deals either with feedback control strategies
for unconstrained linear systems, as in the classical Linear Optimal Regulator problem, or
with "open-loop" control strategies for constrained nonlinear systems as in the classical
minimum-time control problem. In this thesis we are interested in developing feedback
control strategies for constrained nonlinear systems and therefore we use the extension of
optimal control theory proposed by Beyers and Desa [5]. The first step in this approach
is to define a feedback control law which explicitly and a priori takes actuator constraints
into account. The second step is to obtain the combination of the optimal contoller and
plant parameters that optimizes a user defined performance index through the use of
optimization techniques. Beyers experimentally verified the above synthesis approach by
comparing the simulation results with the actual experimental results for the control of a
two-degree-of-freedom robot manipulator. The experimental results were within 10% of

the simulation results.

Having surveyed the related literature in the area of motion planning for non-
redundant and redundant manipulators, we are ready to present the basic building blocks

and concepts of the unified motion planning approach.
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3.4 Unified Motion Planning Approach

In the previous section, we have seen that many studies in the areas of the kinematics
of non-redundant and redundant manipulators can provide us with useful tools for
trajectory planning. However, using the purely kinematic tools developed in these
studies will not guarantee a trajectory that can be executed by a manipulator without
violating the actuator constraints. The studies in the dynamic performance optimization
area provide us a model-based solution which is non-robust in the face of disturbances
and modeling errors. Very few studies in feedback control system synthesis are for
constrained, feedback-controlled, nonlinear systems. As we have mentioned earlier, both
the local linearization control approach and the global feedback linearization approach

have difficulty in ensuring that the control efforts do not violate the actuator constraints.

As we will demonstrate in Section 3.4.2, the unified motion planning approach
proposed in this study would overcome the drawbacks that we have just mentioned. In
addition, a major advantage of the unified motion planning approach is that it allows us
to simultaneously design the optimal motion and the optimal control law in one single
framework. In this section, the research issues which arise in motion planning are used to
motivate the development of the various building blocks in the unified (motion planning)

approach.

3.4.1 Building Blocks
The building blocks or elements of the motion-planning approach are as follows:

A. Parameterization of the desired end-effector trajectory
B. Parameterization of the desired joint trajectories
C. Closed-loop, constrained controller synthesis

D. Multi-criterion optimization technique.
A. Parameterization of Desired End-Effector Trajectory

Parameterization enables us to convert the dynamic optimization problem of
minimizing the performance index Egs. (2.6) or (2.7) into a static optimization problem.
In order to parameterize the desired end-effector trajectory systematically, it is necessary

to address the following issues:
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1. The classification of end-effector trajectories for a general task
specification.

2. A simple parameterization approach for different classes of end-effector
trajectories.

In the literature, there is no good way of classifying the end-effector trajectory. In
this study, we classify the end-effector trajectory x into three categories according to the
freedom provided by the task specification. The reason for this classification is that it
allows us to identify the freedom in the end-effector motion and it also facilitates the
development of a simple parameterization scheme. Based on the classification of the
end-effector trajectory, we can identify the independent or free variables that we can use
for parameterization. From the task specifications, we can then determine the boundary
conditions for the free variables. The idea of the parameterization scheme is to represent
the free variables by simple functions which are a sum of weighted shape functions.
Typical shape functions are sin(z), cos(t) or 1", where ¢ is a variable and n is any integer;
the weights serve to parameterize the function. The end-effector trajectory parameter
vector P, is a vector of the parameters, or weights, which charaterize the functions used
to represent the free variables. By varying P,, one can describe a large class of end-

effector trajectories that satisfy the task specifications.
B. Parameterization of the desired joint trajectories.

As we have mentioned earlier, there are two common approaches for representing
the kinematic redundancy of a redundant manipulator, namely the pseudo-inverse
approach and the partitioned Jacobian approach. However, in the literature, there are
very few approaches that address the parameterization of the joint trajectory which is an
important issue in motion planning for redundant manipulators. In this study, we have
developed a simple parameterization approach for describing the infinite number of joint
trajectories that achieve a specified or parameterized end-effector trajectory. The steps in
the joint trajectory parameterization approach, discussed in detail in Section 5.3, can be

summarized as follows:

1. Based on a kinematic redundancy resolution scheme such as the pseudo-
inverse approach, identify the independent variables which can be used to
characterize the freedom in the joint trajectory.
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2. Then, determine the boundary conditions for these free variables that would
satisfy the task specifications.

3. Parameterize cach free variable using a function which satisfies the
boundary conditions. The joint trajectory parameter vector Pj is the vector
of the parameters or weights used to describe all the free variables. P; can
be varied to describe a large class of joint trajectories that accomplish the
desired end-effector motion.

C. Closed-Loop, Constrained Controller Synthesis

The closed-loop controller synthesis approach proposed by Beyer and Desa [5] for
constrained non-linear systems will be incorporated in the unified motion planning
methodology. We extend their simultaneous plant-controller design concept to motion
planning problems where the trajectory and the controller will be designed in a single
framework. We call this concept simultaneous trajectory-controller design. The

feedback control law is developed in two steps:

Step 1: Define an input &’ in accordance with an appropriate feedback control strategy:

U =G (Y@, ()P0 (3.6)
{ where
G(-) denotes the feedback control strategy selected by the analyst,

yn= (q), is the state vector of the system in joint space,
q

()= (qd), is the desired joint space trajectory vector, and
da

P, is a vector of parameters or “gains" used to represent
the controller.

Step 2: Since the magnitude of the actual control effort # cannot exceed the actuator
constraints u,,,,. the closed-loop control strategy is modified as follows in order to

satisfy the actuator constraints:

u(,)={u' if Iu'l<umx . (37)

Upax sgn(u') iflu'IZum
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Note that the control law Eq. (3.7) is a feedback control strategy which generates a

control input u that cannot exceed the actuator COnStraints 4,,,;,.

The unknown controller parameter (gain) vector P, of the modified control strategy,
the end-effector trajectory parameter vector P,, and the joint trajectory parameter vector
P; are obtained simultaneously by posing and solving an appropriate multi-criterion
optimization problem with actuator constraints. One can see that by simultaneously
planning the optimal trajectory and determining the optimal control law, we are able to
obtain (i) an optimal manipulator motion that, because it is feedback-controlled, is robust
in the face of disturbances and modeling errors and (ii) an optimal control strategy for
which the control efforts do not violate the actuator constraints. In other words, by using
the unified motion planning approach, we can overcome the shortcomings of the

conventional approaches.
D. Multi-Criterion Optimization Technique

Multi-criterion optimization plays an important role in our motion planning
framework. Using an appropriate multi-criterion optimization technique, we are able to
consider the trade-offs between tracking performance and any additional measure of

dynamic performance such as the magnitude of the base reactions or total task time.

Before we introduce the technique that we use, a few words on the differences
between a single-criterion optimization problem and a multi-criterion optimization

problem are in order.

A multi-criterion optimization problem can be simply stated as follow:

minimize I(P),
subject to:

gP) 20

h(P)=0.

where P is a vector which consists of the decision parameters (or parameters to be
optimized) and 7 is a vector of peformance indexes. In the motion planning problem, the
optimization parameter vector P consists of the parameters that represent the freedom
both in the trajectory (P, and P;) and the controller (P,).
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In the multi-criterion optimization area, the word "minimize" is used in a different
sense. In a single criterion optimization problem, an optimal solution gives us the
minimum cost function and is, in general, unique. However, in multi-criterion
optimization problems, the optimal solution is usually a set. Only in situations where the
performance indexes are non-conflicting can one obtain a unique optimal solution. For
example, for the two non-conflicting performance indexes /; and /, shown in Fig. 3.1, the
hatched area represents all possible values of I(P) = [I; (P) IZ(P)]T. The solution

corresponding to point P is clearly the unique minimum solution.

L 4

—

I

Fig. 3.1 Non-Conflicting Performance Indexes

For conflicting performance indexes, one has to choose an optimal solution from a
set comprising an infinite number of optimal solutions. To illustrate this point, consider
the space of the objective function vector I(P) € R? shown in Fig. 3.2. The hatched area
represents all the possible values of I(P). One can see that the optimal solutions
obviously lie on the heavy line AB. To describe all the possible optimal solutions as
shown in Fig. 3.2, we will make use of the term Pareto optimal which is defined by
Osyczka [29] :

An optimal solution P* is Pareto optimal if for every Pe Pfea:ible’ there is at least

one element of 1, I; such that
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Fig.3.2  An Dlustration of Pareto Optimal Solutions.

1(P>I(P"). (3.8)

where Pfeasible denotes all the feasible parameter vectors.

To illustrate this concept, we will compare two Pareto optimal solutions denoted by
points A and B in Fig. 3.2. Let’s first consider the optimal solution given by point A.
Obviously, to decrease /,, we can always pick the solution corresponding to point B.
However, the solution given by point B will increase /;. Similar arguments can also be
applied to point B. One can see that all the points lying on the heavy line represent a set
of optimal solutions called the Pareto optimal or non-inferior solutions. The term
non-inferior solution reflects the fact that a Pareto optimal solution is one that cannot be

improved without worsening at least one of the cost functions, /; or .

In multi-criterion optimization, one always has to select a solution from the set of
Pareto optimal solutions by carefully considering the trade-offs involved. There are
various schemes that allow one to select an optimal solution from the set of Pareto-

optimal solutions. Among some of the popular approaches are:

1. the trade-off method;
2. the weighting objective methods;



3. the goal programming method,;

4. the min-max approach.

In our motion planning approach the performance index /; will be related to tracking
performance while the performance index /, will be a measure of some additional
dynamic performance. Since we have some knowledge of the maximum allowable
magnitude of the tracking performance index /;, the approach that we adopt in the unified
motion planning problem is the trade-off approach which minimizes the performance
index /, and treats the performance index /; as an inequality constraint; an example of the
trade-off approach is given in Appendix A. Using the trade-off approach, we can then
pose the following constrained optimization problem:
minimize 1,

subject to (3.9
I, <,

where 7y is the maximum allowable tracking error.

By solving the above constrained optimization problem, we can obtain the optimal
solution, P* for the parameter vector P which yields the optimal control strategy and the

optimal joint trajectory.

3.4.2 Overview of the Unified Motion Planning Approach
In this section, we will give an overview of the unified motion planning approach.

The motion planning approach is depicted in the block diagram shown in Fig. 3.3.

In this diagram, the inputs provided by the user are indicated by thick arrows. The

inputs consists of the following:

1. the task specifications,
2. the maximum allowable tracking error ¥,
3. an additional measure of dynamic performance,

4. initial guess PY of the optimization parameter vector P.

The unified motion planning approach can be divided into two key components, the
motion planning simulator and the optimization module. We will first explain the basic

operation of the motion planning simulator.



NN

27

AN

yoeasddy Suiuueld UOTOW PyIuN 4 Jo weBeig Yold YV - €€ 34

o
AMpoN | 4
uonjeziuydQ fe— od

;T

™ 1 wput
soupuuojad

o omumup

'y

uonows Jo
suogsnba jo
uonvdau

T’
uBisop wnsls

T
’E‘_- vonezunumed <4
7yt vy | Lanoofen waof | T3

Cd

da uonvzuRaumsed
Kuoyolsn
Jowojp-pa

Jojejnuuig duyuuelq uoio|

NOLLYILDDAJdS

[ ASYL



Based on the task specifications, the end-effector trajectory parameterization block
(see Fig. 3.3) characterizes any available freedom in the task specifications by
polynomial functions with unknown coefficients. The clements of the end-effector
trajectory vector P, are the unknown coefficients of the polynomial functions. As we
have discussed earlier these functions describe a desired end-effector trajectory x4 that
satisfies the task specifications. From these polynomials, one can then determine the
desired end-effector velocity X4 which is needed to compute the desired joint velocity g4.

The next block in the motion planning simulator is the joint trajectory
parameterization block. As described in Section 3.4.1, one can obtain the desired joint

velocity g, from X4 using the velocity relationship, Eq. (2.5). For a non-redundant

manipulator, one would obtain a unique desired joint velocity g, corresponding to ¥,. In
the case of a redundant manipulator, the desired joint velocity ¢4 is described by
polynomial functions whose unknown coefficients arc elements of the joint trajectory
parameter Pj. One can integrate the desired joint velocity g4 to obtain the desired joint

trajectory vector g .

The next module is the control system design module, characterized by the controller
parameter vector P,. The control strategy requires comparison of the actual joint
trajectory ¢ to the desired joint trajectory ¢4 and the actual joint velocity ¢ to the desired
joint velocity g4 Basedona control strategy specified by the analyst which is embedded
in controller structure (3.7), the control system design module generates the actuator
effort u which does not violate the aCtUAtor CONSLraints U,,,,- The control effort u is the
input to the equations of motion. The joint acceleration § can then be obtained directly
from the equations of motion. To obtain ¢ and g, one can simply integrate §. Based on
the actual joint trajectory (g, ¢, §), one can then compute the performance index vector I

(Eq. (2.6) or (2.7)).

As shown in Fig. 3.3, the outputs of the motion planning simulator are the values of

I(P) for a given optimization parameter vector P.

The second component of the unified motion planning approach is the optimization
module which determines the optimal solution P* for the parameter vector P. As shown

in Fig. 3.3, the inputs to the optimization module are the initial guesses PO of P and the

R
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maximum allowable tracking error . The optimization module contains a standard
optimization technique for solving constrained, multi-criterion optimization problems
based on the trade-off approach. The optimization module converts & muld-criterion
objective optimization problem into a constrained single criterion optimization problem
and determines a Pareto optimal solution P* which satisfies the tracking performance (/;
< v) and simultaneously minimizes the additional dynamic performance index I,. The
output of the optimization module P* contains the optimal desired motion characterized

by P, and P; and the optimal control strategy gains which are elements of P,.

To implement the results of the motion planning on the actual manipulator, one
would generate the reference trajectory for a feedback control strategy from the optimal
parameter vectors P, and P;’. The optimal controller parameter vector P,” is then used
in the feedback control strategy given by Eq. (3.7) to generate the control effort u to drive

the actuators.

The software (programming) environment MATRD(XTM was used to implement the

unified motion planning approach for the following reasons:

1. It allows the user to perform simulations through convenient, user-defined,
modular building blocks.

2. It contains a powerful optimization module.

3. The simulation module and the optimization can be linked to each other
very easily, a requirement which is crucial to the realization of our motion
planning approach.

In the next two chapters we will apply the unified motion planning approach to

planning motions for both non-redundant and redundant manipulators.

-



Chapter 4

Motion Planning of Non-redundant Manipulators

4.1 Introduction

In this chapter, we will illustrate how onc can use the motion planning approach to
simultaneously plan the trajectory and design a feedback control law for a non-redundant
manipulator such that actuator constraints are not violated. In Section 4.2, we introduce
the concepts of a feasible motion plan and an optimal motion plan for a manipulator. In
Section 4.3, we enumerate three types of task specifications and also present methods to
parameterize the freedom available in each type of task specification. In Section 44, we
discuss the application of our unified approach for planning motions for non-redundant
manipulators. Finally, in Section 4.5 we illustrate the application of the motion planning
approach to planning feedback-controlled minimum-time trajectories for a non-redundant

2 d.of. planar manipulator.

4.2 Feasible Motion Plan and Optimal Motion Plan
Using the motion planning approach proposed in this study, one can plan two types
of motions - a feasible motion and the optimal motion. The purpose of this section is to

formally define these motions.

In non-redundant manipulator motion planning, depending on the task specifications
one may or may not be able to exploit the freedom in the end-effector trajectory. For
those tasks that do not allow any freedom in the end-effector trajectory, it is important to
" find out whether the specified trajectory can be achieved by a control strategy under
actuator constraints. If this is possible, then we say the trajectory is a feasible trajectory

for the task specifications.

Py |
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For those tasks that do allow freedom in the end-effector trajectory, in addition to
determining whether the trajectory is feasible, we can also ask the guestion: Can we find
a feasible trajectory that improves the dynamic performance of a non-redundant
manipulator? The trajectory that satisfies the task specifications and also optimizes an
additional measure of dynamic performance is called an optimal trajectory for the task.
As an example, in applications such as arc-welding, a feasible trajectory would be an
end-effector trajectory that can be tracked by a feedback-controlled manipulator without
violating actuator constraints. If, in addition, we also want to execute the task in the
shortest possible time, then an optimal trajectory would be a feasible trajectory that

accomplishes the task in minimum task time.

As stated in Chapter 2, we require a motion plan which

(i) satisfies the task specifications;
(ii) is robust. (i.e. achieved by a feedback control strategy);
(iii) does not violate actuator constraints;

(iv) optimizes an additional measure of dynamic performance.

Let x; and x be the desired end-effector trajectory vector and actual end-effector
trajectory vector, respectively. We can then define the end-effector trajectory tracking

error vector x, by

X, =X—X4. 4.1)
In order to meet the first three motion requirements we will define a performance index
I

I =maxix (1)1 4.2)
where Ix,(t)! is the magnitude of the tracking error of the end-effector at time 7. Let Y
denote the maximum allowable tracking error for the task, i.c.

max Ix (D] < v. 4.3)

In order to meet the fourth motion requircment we will define an additional
performance index I, which is a measure of the additional dynamic performance.
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We now define two terms which play an important role in the development of our
motion planning framework.

Feasible Motion: A manipulator motion that satisfies the first three requirements
above and in addition satisfies Eq. (4.3) is called a feasible motion.

Optimal Motion: An optimal motion is a feasible motion that minimizes an
additional dynamic performance index /,.

4.3 Task Specifications

In pick-and-place processes, the end-effector is required to move an object from
point A to point B. In this type of operation, we are only concerned with whether the
end-effector reaches point B in a reasonable amount of time. Therefore, we have the
freedom to select any end-effector trajectory between end-points that would give us good
performance. However, in some other applications such as arc-welding, the end-effector
has to track a prescribed end-effector trajectory which is either (1) only specified
spatially or (2) completely specified. In the former case, since the trajectory is only
specified spatially, we can utilize the freedom available in time to optimize a secondary
dynamic performance criterion. In the latter case, the task specification of the end-
effector trajectory does not provide any freedom for one to exploit.

In general, the task specifications of a manipulator can be classified into three
categories:

e Type I Trgjectory : End-cffector trajectory specified in space and in time, i.c.

x(t) is known.

o Type II Trgjectory : Trajectory specified in space but not in time.

o Type III Trajectory : Only the end points of the end-effector trajectory are

specifed.

For tasks of type I, no freedom is available for the end-effector trajectory. The
motion planning problem is to determine whether the specified trajectory is feasible or
not. However, for tasks of types II and III, one can take advantage of the freedom
available in the end-effector trajectory to determine cither a feasible trajectory or an

optimal trajectory.
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4.3.1 Typell Specification
In a type II task specification, the end-effector is required o track a trajectory
specified in space. The desired end-effector trajectory can be specified in space by

xXg=XLQ), Cmin SOS 0,0 4.4)

where o is a variable which is a function of the time ?. In some applications, it is

convenient to choose . as the arc length of the curve that describes the trajectory.

The use of a parametric description to describe a curve in space is common in

manufacturing and computer graphics [13]. In robotic applications, Bobrow et al. [6]

used the above description 10 parameterize the path of the end-effector in their minimum-

time studies.

By differentiating Eq. (4.4) with respect t0 time, one can obtain the desired velocity

of the end-effector

R M AL (4.5)
where
,  dx
X @=—. (.6)

Let i be the variable that represents the total task time. Since the end-effector is at
rest at the initial and at the final position, we impose the following boundary conditions

on x4(1):
x'd(0)=id(tf)=0. 4.7

If we set a(0) = d.(tf) = 0, then from Eq. (4.5) we sce that the boundary conditions
given by Eq. (4.7) will be satisfied. By differentiating Eq. (4.7), we can obtain the

acceleration of the end-effector trajectory as:

§g=xg (@62 +24@8, (4.8)
where
JZ Xg

x; (@ — (459)

-t

IS s ]
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In addition to the velocity boundary conditions, the acceleration of the end-effector

must also be zero at =0 and 1=ty ie.,

¥40)=kt)=0. (4.10)

If we let &(0)=6(t)=0 and &(0)=tx(tp)=0, then from Eq. (4.8) we sce that the zero
acceleration requirements at the end-points are satisfied. Hence, the appropriate

boundary conditions that a(t) has to satisfy are
0.(0) = amin
Qtp) =gy

a0)=a()= 0

The variable a(t) can be parameterized in a simple fashion using a polynomial of

order ! as follows:

I

a(r)=§a,.xi. (4.12)

where g; (i=0, ..., 1) are the parameters or weights in the representation. In order to
satisfy the six boundary conditions (4.11), the coefficients ay, a;, @y, 8.3, 8.1, G; Must
satisfy the following equations:

8y=Cmin
a,=a,=0
-3 .
(O Cin) (P =D+ g Qil-i~P+1-i%)a;1f
a4-2= 22
-3
(G 1(0-2)+ 3, (1120454220 tf
8=

,f’—l
3
(OO (-1)(-2)+ 3 -1 (=24 260-2)-i(=1)] a;1f
a= = 2% /

The remaining variables a3, g4, . - - @;.3 arc the free variables that one can use 1o

(4.13)

describe a class of end-effector trajectorics that satisfy the boundary conditions (4.11).

“

&(0) = &1 =0. @iy b

!

P
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Let P, denote the vector whose elements are the free variables 43, .-, G1.3 and the total

task time 5, ie.,
P, =la3...a 341 (4.14)

4.3.2 Type III Specification

Since for a Type 1II task specification, only the end-points are specified, we have the
freedom to pick any trajectory between the end-points. A spatial end-effector trajectory
can be represented by three Ih-order polynomials in r:

]

271 =§au’i
1
Xa(t) = azll‘
o
xz() =§a3it‘. (4.15)

The six boundary conditions for a Type III trajectory can be expressed as:
x0)=x,
x4 =5
x40)= J'cd(tf) =0
x40) =i'd(tf) =0. (4.16)

The order of the polynomial given in Eq. (4.15) must be high enough to satisfy the
boundary conditions given in Eq. (4.16) and also to provide enough freedom to represent
a class of end-effector trajectories between the end-points. Since for each x,(i=12.3),
there are six boundary conditions which must be satisfied, the order of the polynomial
must be greater than five. If we allow k independent variables in the polynomial x4(?),
then the order I of x{t) is equal to k+5. If we choose 3,;4.0;s, -Bi1.3y (i=1.23) &8s
the free variables for the polynomial, x4:(t), (i=1,2,3), we can then define the end-effector

trajectory parameter vector, P, as

P¢= [al3,014,...,01(1_3),...,033,034,..,03(,_3)Jﬁ1. (417)

The vector P, which has 3(I-5) clements, represents the freedom in the specification
of the end-effector trajectory.
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The boundary conditions imposed on x4(2) resemble those imposed on a(t) (see Egs.
(4.11) and (4.16)). Therefore aj, (ji=34....(1-3)), (i=1,2,3}, can be readily computed by
expressions similar to Eq. (4.13).

4.4 Procedure for Obtaining a Feasible Motion
In this section, we derive a procedure for obtaining a feasible trajectory for non-
redundant manipulators.

Step I: Define task specifications.

In a Type I specification, we command the end-effector to move from point x, to

point Xy along a prescribed trajectory. The task specifications can be simply stated as:
x40)=x,
X =%
xN=f1), 0sr=¢; (4.18)

where fit)e R? is a vector of prescribed functions which represent the end-effector

motion in 3-space.

In a Type II specification, we command the end-effector to move from point x, to
point x; along an end-effector trajectory prescribed in space, x(ar), within the maximum
allowable task time, tf Mathematically, we can express the task specifications by

Xg=x40)
x0)=x,
x4 )=xf
a0)=a,,;,
0({;) =Qpax

Gi(tg) =6 =0

&(0)=ty=0
1< :, (4.19)

In a Type III specification, the end-effector must move from point x, to point Xz
Mathematically, we can express the task specifications by ’

e

|
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x0)=x,
X4 =%s
x40)= i'd(tf) =0

¥£0)=¥4)=0

I < 4. 4.20)

Step 2: Parameterize the end-effector trajectory (for Type II and Type III task
specifications only).

(a) Type Il Specification

For a Type II trajectory, using the parameterized polynomial function developed in
Section 4.3.1, o can be expressed by the following expression:

where f; is a polynomial given by Eq. (4.12) and P, is defined in Eq. (4.14).

Note : The vector P, includes ¢, as onc of the parameters. This enables us to describe
a class of trajectories that satisfy task specifications and whose task time tfis less than or

equal to the maximum allowable task time, zf'
(b)Type 11 Specification

For Type III trajectory, we can use Eq. (4.15) to obtain a parametric description for
each x4(1), i=1.2,3. Using the parameterized polynomial functions developed in Section

4.3.2, we can express x4,(2) by

xd(t) =f2(’vP¢)1 (4~22)

where P, is defined by Eq. (4.17) and the elements x; (i=1,2,3) of f, are given by Eq.
4.15).

Step 3: Determine the desired joint trajectories, ¢4 Then, using the velocity

-
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relationship stated in Eq. (2.4), we can obtain an expression for the derivative of the joint
trajectory ¢, by simply pre-multiplying the desired end-effector velocity vector by the

inverse of the Jacobian matrix :
dg=J 1%, (4.23)

The desired end-effector velocity vector % is first determined by differentiating the end-
effector trajectory x, obtained in Step 2. The expression for g4(t) can be numerically
integrated using standard routines such as the Runge-Kutta method or the Kutta-Merson
method to obtain the desired joint trajectory vector g4(t). g, and g4 will be used in the
computation of the control inputs u (see Step 4).

Step 4: Obtain the state-space dynamic model of the manipulator.

The state vector y of a manipulator is defined as

y= (Z). (4.24)

The equations of motion of a manipulator [1] can be expressed as

u=M(@)§+V(g.9)+G(q), 4.25)
where
u is the vector of torques applied at the joints,

M(-) is the mass matrix of the manipulator,
V(-) is a vector of nonlinear terms in g and g,

and G(-) is the vector of the terms contributed by gravitational
forces acting on the manipulator.

~ The joint acceleration of the manipulator ¢ can then be obtained from the dynamic
équations Eq. (4.25) as

G=M"Yg)(u()-V(g,4)-G(@)). (4.26)

Defining matrices A and B as follows:
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B=M"Y(g)
A=B(V(g.9)-G(@), (4.27)
we can express § by
G=A()+BO)u. (4.28)

Using Egs. (4.26)-(4.28), we can write the equations of motion of the dynamic

system as a set of 2m ordinary first-order differential equations:

y=C(@)+ D) u(t), (4.29)

where

e-()

D= (g). (4.30)

The above state-space equations (4.29) can be integrated numerically to obtain the
values of the state vector y. The values of y and y are useful in computing the

performance index defined in Step 7 below.
Step 5: Formulate the appropriate control strategy

We want to formulate a closed-loop control strategy that yields a contro! effort
vector # which does not violate the actuator CONSITaints, ¥y, We will develop the

control structure! in two stages:
(Stage 1) Define an input « based on some desired feedback control strategy:

u' =GO OPc) (431)

where

G(-) denotes the control strategy,
y(1) is the state vector,

IThis stage was discussed in Section 3.4 of Chapter 3 and is repeated here for convenience
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)= (qd). is the desired joint space trajectory vector, and
dq

P, is a vector of parameters used to represent the controller.

(Stage 2) Since the magnitude of the actual input u cannot exceed the actuator
constraint u,,,,, we modify the strategy defined in stage (1) to yield the following
controller structure:

u(t)={ Ui W 1<U i (4.32)

Upox sgn(u’) if lu'IZum

By using the controller structure defined in stage 2, we have a closed-loop controller that
satisfies the motion planning requirements (ii) and (iii) as listed in Section 4.2.

Step 6: Identify the optimization parameters.

Using the parameterization expressions for the end-effector trajectory x, we can
characterize the motions of a manipulator by a vector P, which is defined as follows:

P= G:) (4.33)

where P, is the task-space parameter vector defined in Step (2), and P, is the controller
parameter vector of the control strategy defined in Step (4). P is therefore the vector
whose elements are the parameters which must be optimized. The elements of P will be
determined by solving the tracking performance problem defined in Step (7). Note that
for a Type I trajectory, P only consists of the elements in P,.

Step 7: Determine the optimization parameter vector P by posing an appropriate

optimization problem.

As we have mentioned earlier, the parameters in P are the optimization parameters
that one can manipulate to obtain a feasible trajectory. To determine these parameters,
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we must pose an appropriate optimization problem for the tracking performance index,
1.

Before we formulate the optimization problem, we will first define a few key
variables. Let g, and gy be, respectively, the joint-space configurations corresponding to
the specified end-effector position, x, and x; Then, the trajectory specifications in the
joint space for the Type Ill specification are:

g40)=¢g,
a41p=3qr
d40)=4,1p=0. (4.34)

We can also define the joint-space error vector as:

¥, 0= g0\ = (RO (URY (4.35)
(ée(f)) (dd(t)-d(t)))

For Type I specification, to ensure that the end-effector is at the desired final
position, xpat 1=t We want y,(t)=0. Thus, the most straight-forward performance index

one can use is in the form:
1,(P)=q,pTq, () +wid (4. (1)- (4.36)

We can therefore pose the following optimization problem to obtain a feasible trajectory

for a Type III trajectory:

min 1,P)=¢,Tq,+w1d¢"de (4.37)
subject to the constraints (4.25), (4.32) andt; S .

In above equation w; is the weighting factor for scaling and ensuring dimensional
homogeneity of the two quadratic forms in /j, tfis a variable which defines the final time
when the end-effector reaches x4 = Xp If there is perfect tracking, then the actual
position, x(tp)=xp ¥(ty)=0 and therefore y,(t5)=0.
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However, the performance index given in Eq. (4.37) does not ensure good tracking
performance along the trajectory, a requirement which might be important in the general
case. Therefore, a more suitable performance index (for type 1, II and III trajectory)
might be '

1,(P)=maxx,), (4.38)

which minimizes the peak magnitude of the tracking error

With the latter performance index, we can pose the following unconstrained
optimization problem to obtain the optimal P for a feasible motion:

min  I,(P)=max|x,), (4.39)

subject to the constraints (4.25), (4.32) and t; < tr'.

The solution P* to the optimization problem (4.37) or (4.39) yields the feasible trajectory
and the gains for the feedback control strategy.

4.5 Procedure for Obtaining the Optimal Motion

In addition to realizing the primary goal of satisfying the tracking requirements, we
are often interested in using any available freedom in the end-effector trajectory to
improve some additional aspect of a manipulator’s dynamic performance (the secondary
goal). In such cases, we have to consider two performance indexes, one of which is a
measure of the maximum tracking error and the other a measure of the additional
dynamic performance of interest. Let/; and I; be the tracking performance index and the
secondary dynamic performance index, respectively; /; is the tracking performance index
defined in Eq. (4.38).

IfIP) =[], 1217 denotes the performance index vector, then we can pose the
following multi-criterion optimization problem for obtaining the optimal motion:

minimize  I(P). (4.40)

subject to the constraints (4.25), (4.32) and t; < t; .
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The above optimization problem basically states that we want to minimize both /; and I,
simultaneously. However, as pointed out in Section 3.4, only in situations where /; and
1, are non-conflicting, can we attain the minimum of /; and /, simultaneously. For this
situation, we can simply minimize J; or I, to obtain the minimum solution. In other

cases, we have to consider the trade-off between conflicting performance indexes.

In a lot of motion planning problems we can only improve the additional
performance index by sacrificing the tracking performance. Therefore, to minimize I(P)

effectively, we will use a mult-criterion optimization method called the trade-off

method. In Fig. 4.1, a two-dimensional performance index space is shown. I; denotes
the tracking performance index which has to be less than or equal to the maximum
allowable tracking error, Y.

Let Sfbc a set which consists of all the feasible motions, i.c. Sfis given by:

S= (PI,(P)=Y S¥). (4.41)

The heavy line FO in Fig. 4.1 represents the set Sp of all the Pareto optimal solutions
that meet the feasible motion requirement. Using the trade-off approach, described in
Section 3.4, we can obtain an optimal motion from Sp by posing the following
constrained single-criterion optimization problem:

min I5(P) (4.42)

subject to
L(P)sY.

The result of the above optimization problem is shown as point O in Fig. 4.1 which is the
smallest value of performance index /, under the tracking performance constraint on /;.

The procedure for obtaining an optimal trajectory can be summarized as:
1. Define the maximum allowable tracking emor y from the task
specifications. Select an initial guess for the optimization parameter, PO.

2. Obtain a feasible motion using the procedure described in Section 4.4. If a
feasible motion is unattainable, modify the task specification or the actuator
constraints in order to obtain a feasible motion.

3. With PO and ¥, solve the nonlinear programming problem stated in Eq.
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Fig.4.1  Pareto Optimal Solutions Which Satisfy the Feasible
Motion Requirement.

(4.42) and obtain the optimal solution P* for the (optimization parameter
vector) P. Once P* is obtained, the optimal trajectory and associated
feedback-control law can be readily determined.

4.6 Example: Feedback-Controlled Minimum-Time Motion Planning

In this section, we will use an example to demonstrate the process of obtaining the
minimum time trajectory for a non-redundant feedback-controlled manipulators. In a ot
of pick and place operations, a manipulator is required to pick up an object and place it
down in the shortest possible amount of time. The problem that we wish to solve can be

stated as follows:

Given the initial position and end position of the end-effector for a non-redundant
manipulator with actuator constraints U,,,., obtain an optimal trajectory x(t) and the
closed-loop control strategy that will achieve the task specifications in minimum task
time.

The example that we will study is a two d.o.f. planar manipulator shown in Fig. 4.2.
Let [; and m; denote the length and mass, respectively, of joint i. /,; denotes the distance

>
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Fig.42 A Two Degree-of-Freedom Planar Manipulator .

from the joint-axis of joint i to the center of mass of link i. The central moment of inertia
for an axis perpendicular to the plane of motion of link i is given by I;. The link
dimensions and the mass properties are shown in Table 4.1. The equations of motion of
this manipulator are given in [1]. The actuator at each joint can deliver a maximum
torque of 0.1 N-m. Therefore, the actuator constraints can be expressed by u,,,,. = (0.1

0.1,

In the following discussion, we will study three cases. The results of these three
cases are tabulated and summarized in Table 4-2. In Case 1, we arbitrarily let task time 4
= 2.0s. The objective is to see if we can obtain a feasible trajectory that can be executed
with task time tj=2.0s. In Case 2, we solve the same problem as in Case 1, except the
task time is increased to th.Os. The objective is to examine the effect of the task time on
the tracking performance and required actuator torques. In Case 3, we find the optimal

trajectory that can be executed in minimum-time.
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Link 1 Link 2
m; [kg] 1.0 |10
I [m] 0.5 0.5
1,; (m] 0.25 0.25
1,; [kg-m?) 0.005 0.005

Table4-1  Link Dimensions and Mass Properties

Case | Problem Results Conclusions

1 Find a feasible trajectory | ® Poor tracking performance | ¢ Cannot find a feasible
*1=2.0s emax kx| = 0.0075m trajectory.
* (u,,,);=0.IN-m see Fig. 4.3 (a,b)
(umu)2=0‘ IN-m

2 Find a feasible trgjectory |  Tracking perf. ¢ By relaxing task time 1
. lj=4.0 sec is improved. a feasible trajectory
* (Uy,);=0.IN-m * max I =0.0012m is found.
*(u_,,),=0.IN-m See Fig. 4.4 (a,b).

3 Find the minimum-time | ® max ix (t)=0.003m. ¢ An optimal trajectory
trajectory See Fig. 4.5 (a,b). with £,=3.0s is obtained.
* i< 4.0s.

Table 4-2  Summary of Results

4.6.1 Case 1 : Finding a Feasible Trajectory with t=2.0s
For illustration purposes, we will solve the problem in accordance with the procedure

outlined in Section 4.4 for a Type III specification.

Step 1: The task of the non-redundant manipulator is to move from point A (0.3536,
0.3536)(m) to point B (0.5656, 0.5656) (m) with the maximum tracking error less than y
which is specified as 1 % of total distance traversed. The task specifications (Type III)

are given as follows:
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tf=2.0s

x(0)=(0.3536,0.3536)T
x(zf)=(0.5656,0.5656)7

2(0)=3x(1)=%(0)=%(t) =0
¥=0.003m. (4.43)
Step 2: Parameterize the end-effector trajectory to satisfy the task specifications
given in Step 1. In order to have enough parameters to represent a large class of end-
effector trajectories, we allow two free variables in each of x; and x5, i.e. the order of the
polynomial used to represent x; and x, is equal to 7. We can then write x; and x, as
=7 .
x (=Y ay;t,
1 ; 1i

1=7 .
(0= 02" (4.44)

From above equation, the end-effector trajectory parameter vector P,is given by :

P,=la3 a4 ay3 oyl (4.45)

Step 3: Obtain the desired joint trajectory using the joint velocity equation (Eq.
(4.23)). The desired end-effector velocity vector can be obtained by differentiating Eq.
(4.44).

Step 4: For simplicity we choose a PD controller for the control strategy u in Eq.
(4.31) with proportional gain vector, kp, and derivative gain vector, kg, as the unknown

controller gain vectors.

For the PD controller, the controller parameter P, can be written as

P.=[ky kyp kg kpl". (4.46)

The PD control strategy can be embedded in the control structure (4.32). Now, we
have a PD control strategy that satisfies the actuator constraints with  the control

strategy parameters given by the elements of P, in Eq. (4.46).

Note that in this example we have chosen a simple PD controller. For better
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performance one might need to use a more complicated control strategy. Using the
unified motion planning approach, one can test different control strategies by simply

replacing u in Eq. (4.32) by a particular control strategy of interest.

Step 5: Based on the dynamic equations of a 2 d.o.f. manipulator given in [1], obtain

the state equations of the system using Eq. (4.29).

Step 6: The optimization parameter vector P, consisting of the end-effector trajectory

parameter P, and the controller parameter P, can be written as
P=[a13 a4 023 Qa4 kpl kpz kdl kdz]T. (447)

Step 7: Determine Pc' and P;, the optimal solutions for the following tracking

performance optimization problem:

min Iy=maxIx (0l (4.48)

The initial guess for P is PO = [0 0 0 0 10 10 10 10)T. After solving the above
optimization problem, the optimal solution was given by P* = [-0.048 -0.0241 0.0746
0.0339 9.9998 10 10.0002 10.0]T. Once P* is obtained, we can then obtain the optimal
trajectory and the optimal PD controller. The results of the simulation are shown in Figs.
4.3-4.6.

The actual end-effector trajectory is shown in Fig. 4.3 (a). In Figs. 4.3 (b), one can
see that the trajectory has a maximum tracking error of 0.0075m which exceeds the
tracking error specification of 0.003m. Therefore, no feasible end-effector trajectory can
be obtained for a total task time of 2.0s. The joint trajectory of the manipulator is shown
in Fig. 4.3. We can see that the trajectories are smooth and have zero velocity at the end
of the task time. As shown in Fig. 4.3(d), the actuator of joint 1 is saturated from 0.25s to
1.0s and from 1.5s to 2.0s. The actuator of joint 2 is also saturated from 1.64s to 1.95s.
The highly saturated torque profiles suggest that with the time constraint that we imposed

on the problem, the tracking performance requirement cannot be satisfied.
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4.6.2 Case 2: Finding a Feasible Trajectory with t;=4.0s.

In this case study, we relax the time constraint by letting tfcqual to 4.0s. Using the
same procedure as outlined in Case 1 and the same initial guess PO used for Case 1, we
obtain the following optimal parameters, P*= [-0.0126 -0.0097 0.0091 0.0039 10.00
10.00 10.00 10.00]T. From Figs. 4.4 (b), one can see that since the maximum tracking
error is 0.0012m, there is a considerable improvement in the tracking performance.
Hence, we have obtained a feasible trajectory in 4.0s. The actual end-effector trajectory
is shown in Fig. 4.4 (a) and the corresponding joint trajectories are shown in Fig. 4.4 (c).
In Fig. 4.4 (d), the joint torques for joint 1 and joint 2 are shown. The joint torques are
not saturated and are well below the actuator constraints. From the torque profiles, we

see that the actuators are obviously not utilized to their full capacity.

4.6.3 Case 3:Determine the Minimum-Time Trajectory

In this case study, the goal is to obtain the minimum time trajectory using the
optimal motion procedure described in Section 4.5. Since we have obtained a feasible
trajectory in Case 2, we can proceed directly to Step 3 of the optimal motion planning

procedure.

Step 3: From the results of Cases 1 and 2, one can notice the optimal controller
parameters are almost identical to the initial guesses. This fact was also observed for
other set of initial guesses. Therefore, to reduce the computational load, we dropped?the
controller parameters from the optimization parameters vector P. The optimization

parameter vector P is reduced to P, which is given by the following equation:
P¢= [013 Q14 Gr3 Gyy {f]T. (449)

Note that in above equation we include the total task time I, as one of the optimization

parameters.

To obtain the minimum-time trajectory for the manipulator, we can pose the

constrained optimization problem given in Eq. (4.42) with /,=1,and ¥=0.003m:

2This practice is, of course, not valid in general.
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minimize 12=tf (4.50)
subject to
I, < y=0.003m.

The optimal solution for the parameter vector P is given by P* = P, =[-0.0078 -0.0053
0.009 0.0044 3.0422]T. The optimal task time is equal to 3.0422s. The simulation results
for the minimum-time trajectory are shown in Fig. 4.5. The actual end-effector trajectory
is shown in Fig. 4.5(a). We can see that there is a slight overshoot at the end of motion.
From Fig. 4.5 (b), we can see that the maximum tracking error is 0.003m which occurs at

the end-point of the trajectory and is equal to the maximum allowable tracking error.

The trade-off between I; and I, is shown in Fig. 4.6. From the trade-off curve, one
can see the quantitative trade-off between the tracking performance /; and the task time
1, for u,,,.=(0.1 0.1 N-m]T. As is to be expected, the task time can only be improved by

sacrificing the tracking performance.

4.7 Summary
In this chapter, we have developed and applied the unified motion planning approach

for planning the feasible and optimal motions for a non-redundant manipulator.

Using the (feedback-controlled) minimum-time trajectory example, we have shown
how we can use the unified motion planning framework to pose and solve appropriate
optimization problems for obtaining both the feasible and the optimal trajectory. The
framework also provides a tool for the analyst to understand the trade-off between
tracking performance and any other additional performance requirement. In the particular
minimum time problem that we studied, one can understand the trade-off between
tracking performance and the total task time for a constrained manipulator from the trade-
off curve shown in Fig. 4.6. This type of quantitative understanding is necessary in a lot

of robotic motion planning problems.
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Chapter §

Motion Planning of Redundant Manipulators

5.1 Introduction

The ability of a redundant manipulator to accomplish an additional task has been the
impetus for many redundant manipulator studies. In this chapter, we present a motion
planning framework for a redundant manipulator which exploits the freedom in the joint-

space trajectory and end-effector trajectory in order to optimize dynamic performance.

This chapter is organized as follows. In Section 5.2, we present and compare two
different kinematic redundancy approaches - the partitioned Jacobian approach and the
pseudo-inverse approach - and show why the latter approach is preferred. Then, in
Section 5.3, we present a method of parameterizing the joint-space trajectory based on
the pseudo-inverse approach. In Section 5.4, we will discuss the unified motion planning
approach for redundant manipulators. In Section 5.5, we use the base reactions
minimization problem to demonstrate the effectiveness of the unified approach in
planning feedback-controlled feasible and optimal motions for a 3 d.o.f. manipulator with

one degree of redundancy.

5.2 Redundancy Resolution Approaches

As seen in Chapter 2, a redundant manipulator with m degree-of-freedom (or m
revolute joints) performing a task which requires n degrees of freedom, has p=(m-n)
degrees of redundancy. This means that for a given end-effector position there are an
infinite number (_P) of joint-space solutions. Redundancy resolution refers to the process
of selecting a joint-space solution from the P possible joint-space solutions. Two of the
most commonly used Redundancy Resolution Schemes - the Partitioned Jacobian
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approach and the pseudo-inverse approach- will now be discussed.

5.2.1 Partitioned Jacobian Approach

The basic idea of the Partitioned Jacobian approach is to make use of the observation
that in Eq. (2.4), if J is full rank, then p=m-n of the joint variables, g;, (i=1.2,...,n), may
be regarded as independent variables. These independent or free joint variables can be
regarded as the elements of an p dimensional redundant joint velocity vector, ¢, € R™",
The remaining m joint variables can be regarded as the elements of an m-dimensional

non-redundant joint velocity vector, ¢,,-

By dividing the joint variables into a non-redundant group and a redundant group, ¢
can therefore be partitioned into:

q=(qanr), 5.1

where ¢, € R", is called the non-redundant joint vector and ¢, € R™™" is called the

redundant joint vector.

We can then partition the Jacobian matrix J into the non-redundant Jacobian matrix
(J,,;) and the redundant J acobian matrix (J,) such that the end-effector velocity x can be

written in the following form:
X = Jpp Gpr + Jr Gr (5-2)

From the above equation, we can express the non-redundant joint velocity vector ¢,,, in

terms of the redundant joint velocity vector ¢,:
Gpr = Jurt (2 = Jp Gr ) (5.3)

Eq. (5.3) is the basic redundancy resolution formulation for redundant manipulators and
states that for a given end-effector velocity, the derivative of the redundant joint vector
g,y can be expressed as a unique function of the derivative of the redundant joint vector
g,- Using the definition of ¢ given in Eq. (5.1), the joint velocity, ¢, can be written ina

compact form as:
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In Eq. (5.4), the joint velocity vector is expressed as a function of the derivative of the

redundant joint vector ¢, and the end-effector velocity x.

The expression that we have developed in Eq. (5.4) is based on the velocity
relationship. An alternative form can be obtained by using the acceleration relationship.

Taking the time-derivative of Eq. (5.2), the acceleration of the end-effector is given by
X = jnr dnr + jr G + Jpp Gue + J; Gy (5.5)

From the above expression, we can then express the non-redundant joint acceleration
vector ¢,, in terms of the redundant joint velocity ¢, and redundant joint acceleration

VECLOT g,
Onr = Jnr—1 (x - jr g - jnr nr = Jr G, ) (5.6)

The non-redundant joint acceleration vector §,,, can also be written in the form

Gur=dn (¥=d G-1,3,). (5.7)

Using Eq. (5.1) and Eq. (5.6), the joint acceleration vector § can be expressed in a

compact form:
. -1 w_ . - o -1 .
i= Jur E}x Jq])+( J,,; J’)ﬂr (5.8)

One can resolve redundancy using either Eq. (5.4) and (5.8). However, both Eq. (5.4)
and Eq. (5.8) require that the matrix J,,, be invertible. Since J,,," is not invertible for
so-called singular configurations of a manipulator, one must identify all of these singular
configurations in order to "avoid" them. Identifying all possible singular positions is
extremely difficult if the manipulator has many degrees of redundancy and is even more
so if the manipulator is spatial. Due to this shortcoming, even though the partitioned
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Jacobian approach is conceptually very simple, it is not easy to implement. In the next

section, we will discuss a more convenient approach, the pseudo-inverse approach.

5.2.2 Pseudo-Inverse Approach
One method [18,20,23,26,28] of determining the joint velocity vector ¢, based on the

pseudo-inverse matrix J* of the Jacobian matrix J (see Eq. (2.4)), is as follows:
g=J*x+I-J*Dk (5.9)

where ke R™ is an arbitrary vector, I € R™™, J € R™ and J* € R™.

Substitution of the expression for ¢ given by Eq. (5.9) into Eq. (2.4) shows that the
right-hand-side of Eq. (5.9) is indeed a solution of Eq. (2.4). (Remember that JIt=I).
Let us interpret the physical meaning of the solution given by Eq. (5.9). The first term,
on the right-hand-side of Eq. (5.9) gives the joint velocity component that would produce
the desired velocity in the task space, i.e. JJ¥ ¥ =Ix = % In Eq. 5.9), d-J*)is a
projection matrix that projects any vector k € R™ onto the nullspace N(J) of the Jacobian
matrix, i.e., JI-J*Dk=0. Since the projection matrix maps any arbitrary k onto the

nullspace N(J), we call the second term the nullspace solution for the joint velocity.

The dimension of the nullspace N(J) is m-r where r is the rank of J. In order for a
manipulator to track a general curve in n space, J must be full rank, i.e. r=n. Therefore

the dimension of the nullspace N(J) is, in general, (m-n).

If we let the i column of (I-J*J) be y;, (i=1, 2, ..., m), Eq. (5.9) can be written as

g=J*i+Y yik; (5.10)
=1

where k; is the ith element of k. Each vector ; lies in the nullspace N(J) of J.

Since there are m elements in k, one might conclude that there are m independent
variables. However, since the dimension of the nullspace N(J) is m-n, only (m-n) of the
column vectors, ;, (i=12, ..., n) are linearly independent. If y;, (i=1,2, ..., n) is ordered
such that the first (m-n) vectors, i.e., ¥;, (i=1, 2, ..., m-n), are linearly independent, then

Eq. (5.10) can be written as
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q'=J"’.i'+"§w,-s,- (5.11)
=1

where s; are arbitrary coefficients. Note that in above equation there are only m-n

independent variables s;, (i=1,2,...,m-n).

If we let @ denote an mx(m-n) matrix whose i** column is V;, i=1,...,(m-n) and s

denotes a column vector with elements s;, i=1,..,(m-n), we can write Eq. (5.11) as
g=J*x+Ds (5.12)

From Eq. (5.12), one can see that for a manipulator with one degree of kinematic
redundancy, @ consists of only one column vector (¢ = y,) and one coefficient s;, due to
the fact that the dimension of the nullspace N(J) is equal to one. Therefore, to represent
the basis for N(J), one can arbitrarily choose a single column vector from the m columns
Vi (i=1,2,' .., m-n). We can also see that the scalar s; expresses the freedom in the joint

trajectory (for the one degree of kinematic redundancy case).

In a lot of applications, the joint acceleration vector ¢ is often required in the
computation of the performance index. The joint acceleration g, obtained by taking the

time-derivative of ¢ in Eq. (5.9), is given by the following expression:

G=J*¥+J*t ¥+ Wk+ Wk, (5.13)

where W is (I-J*J). As shown in Appendix C for a 4 d.o.f. planar manipulator, the
computation of ¢ using Eq. (5.13) can be rather laborious. The difficulty of computing §
arises from the fact that in order to compute the time-derivative of the pseudo-inverse J*,
J* =JT (JJT)1), we have to determine the time-derivative of (J JT) -1 which is not a
trivial task. To get around this problem, in our unified motion planning approach, the

joint acceleration vector is computed from the equations of motion (Eq. (4.28)) instead.

In some studies [18,40], the redundancy is resolved at the accglcration level instead
of at the velocity level. The advantage of this approach is that in applications where § is
needed in the computation of the performanc index, the joint acceleration vector g can be
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obtained directly through the use of the pseudo-inverse of the Jacobian matrix.

Taking the time-derivative of Eq. (2.4), the acceleration of the end-effector trajectory

is obtained as:

¥=Jg+Jq. (5.14)
From Eq. (5.14) the pseudo-inverse solution for § is then given by

g=J* (3-J@+UT-J*Dk. ' (5.15)

In the above equation, the joint acceleration vector consists of two terms: the first term is
used to maintain the desired acceleration of the end-effector trajectory; the second term is
the nullspace solution for the joint acceleration that expresses the freedom arising from
kinematic redundancy. It is worth noting that the same projection matrix used in Eq.
(5.9) is used to project vector k to the nullspace of the Jacobian matrix. Therefore, the
dimension of the null-space term (the second term in Eq. (5.15)) is still m-n. The joint
acceleration § can be integrated numerically to obtain the joint velocity ¢ and the joint

trajectory ¢ once the initial joint variables and the initial joint velocities are known.

One disadvantage of resolving redundancy at the acceleration level is that in our joint
trajectory parameterization scheme (to be discussed in Section 5.3), it is unclear how one
would impose appropriate boundary conditions on the free variables k to achieve a
desired end-effector motion. However, using the joint velocity equation (Eq. (5.9)) and
the joint acceleration (Eq. (5.13)) derived from the velocity equation, we will be able to
determine the appropriate boundary conditions on k very easily. In the next section, we
will discuss the joint trajectory parameterization scheme based on the joint velocity
expression (Eq. (5.9)).

5.3 Parameterization of Joint Trajectories

In the parameterization of the joint-space trajectories, the joint trajectories ¢(t),
(0<tsty), are represented by polynomial functions with unknown coefficients. With
these functions, we are able to describe a class of joint trajectories that satisfy the task

specifications. Mathematically, we can then express the joint trajectory as
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q(t)=h(t,Pj,x(t)), 0.<_tStf, (5.16)

where P; is the joint trajectory parameter vector, x is a desired end-effector trajectory and

t is the time.

In a Type I specification, x(t) is a vector of prescribed functions, whereas in a Type
II and Type I specification, x(t) is a function of the end-effector trajectory parameter

vector P,. Hence, for both Type II and III trajectories, we can write:

x()=ft,P,). (5.17)

In view of Eqgs. (5.16) and (5.17), we observe that for a Type II and a Type I end-
effector trajectory, ¢(t) is a function of both the end-effector parameter vector P, and the

joint-space parameter vector Pj.

The first step of our joint trajectory parameterization scheme is to use the joint
velocity equation given by Eq. (5.9) and parameterize k with some appropriate functions.
To obtain a set of representation functions for k, we first need to determine the suitable
boundary conditions for k. For redundant manipulators, ensuring that the end-effector
trajectory satisfies the boundary conditions is not sufficient because a stationary end-
effector does not necessarily imply that the links are at rest. Therefore, it is also

necessary to ensure the joint trajectory ¢ satisfies the zero boundary conditions, i.e. q(0)

= §(ty) = §(0) = 4(1) = 0.
In view of Eq. (5.9), if
k(t)=0 att=0and t=t;. (5.18)
then g(0) = q(tf) = 0 for x=0.

Similarly, in view of Egs. (5.13) and (5.18) and if in addition, we let
k(1)=0 at t=0 and t=t;, (5.19)

then §(0) = b(tf) = 0 for ¥=¥=0. Therefore, the boundary conditions for k can be
expressed by Egs. (5.18) and (5.19). To obtain a parameterized expression for k, we can

represent k), (i=1,...,m), by the polynomial
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!

ko= %" (5.20)

In order to satisfy the 4m boundary conditions (given by Eqgs. (5.18) and (5.19)), the
coefficients a;y, a;1, a; 1), and a; (i=1,2,...,m) must satisfy the following equations:

a;,=a;=0
-2

z;(i-l)a,-zj

ai(l—l)=_t/T

-2 i
3 (-1-Dayif

tf

The remaining variables a;5, a;3, ..., @), (i=1.2,...,m) are the free variables one can use

a; (5.21)

to represent a class of joint trajectories that satisfy the boundary conditions (Egs. (5.18)

and (5.19)). Let Pj denote the vector whose elements are the m([-3) free variables , i.e.

Pj= [(112,013, vesy 01(1_2), ...,{112,013, vesy 01(1_2)]. (522)

P; represents the freedom in the joint trajectory g for a given end-effector trajectory x.

We can take further advantage of kinematic redundancy by treating some of the joint
variables which specify the initial configuration of the manipulator as independent
variables. If a manipulator has (m-n) degrees of redundancy and we let 67, G2, .y Opy
denote the independent initial configuration parameters then the vector P; can be defined

as follows:
Pj= [012, ooy 01(1_2), ey G2y eons 01(1_2), 0'1 goeey Um_n] . (523)

To determine the dependent initial joint variables in terms of the (m-n) independent
initial joint variables for a given end-effector position one must use the so-called Inverse
Kinematic Equations for the manipulator. These equations are given in Appendix D for a

3 d.of. and a 4 d.o.f. planar manipulator.
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5.4 Motion Planning for Redundant Manipulators

In chapter 4, we have described a motion planning procedure for obtaining the
feasible trajectory and optimal trajectory for non-redundant manipulators. The procedure
described in Chapter 4 for obtaining the feasible trajectory and optimal trajectory for non-
redundant manipulators can be easily extended to the motion planning problem of

redundant manipulators.

In this section we describe how the procedure described in Section 4.4 for obtaining
the feasible trajectory must be modified in order to handle redundant manipulators. The
procedure for obtaining the optimal trajectory, given in Section 4.5, are directly

applicable to redundant manipulators.

The first two steps for obtaining the feasible trajectory (in Section 4.4) deal with the
parameterization of the freedom available in the end-effector trajectory. These steps are

the same for the redundant case.

In Step 3, the pseudo-inverse approach is used for redundancy resolution. The joint

velocity g, can then be represented as
Gg=J*x4+(I-J*J)k.

We represent k by means of the polynomial functions defined by Eq. (5.20) and Eq.
(5.23).

For a manipulator with one degree of redundancy, the dimension of the nullspace

N(J)is equal to 1. We can then use following simpler equation for determining ¢:
Gg=J"x3+9;5), (5.24)

where ¢, is the first column of the projection matrix (I-J*J) and s, can be represented in

a fashion similar to Eq. (5.20).

Steps 4 and 5 of the procedure, which deal with prescribing the state-space model of

the manipulator and the appropriate control strategy are the same for the redundant case.

For the redundant case, the optimization parameter in Step 6 is defined as follows:
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p=(pT PT PTIT. (5.25)

where P, is the end-effector trajectory parameter vector, Pj is the joint trajectory

parameter vector, and P, is the controller parameter vector.

Application of Step 7 of the procedure in Section 4.4 to the present problem would
then yield the optimal value of P which in turn yields the feasible trajectory and the
corresponding feedback control strategy.

5.5 Illustrative Example : Base Reaction Minimization

In section 5.4, we have discussed the unified motion planning approach for
redundant manipulators. In this section, we will demonstrate the procedure for obtaining
a motion plan that optimizes a specified dynamic performance. The problem that we
address is the minimization of the magnitude of the reactions transmitted to the base of a

manipulator used in space.

Fig.5.1 A 3 d.o.f. Planar Manipulator
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We propose to minimize the magnitude of the base reaction for the 3 d.of.
manipulator shown in Fig. 5.1. The mass properties and link dimensions of the

manipulator are given in Table 5-1.

Link1 [Link2 |Link3
m; kg) 10 0.5 0.5

) 05 025 [0.25
1;[m) 025 0125 [0.125

I kg-m? [0005 [00026 |0.0026

Table 5-1 Mass Properties and Link Dimensions

The task of the 3 d.o.f. redundant manipulator is to track a completely specified
straight-line trajectory described by a Type I specification using a PD controller. The
end-effector trajectory x(t) can be expressed as follows:

x(=a()e, 0<1< I
where

4
= —_'L ] Z?t_t
a()=b(t 2nsm( tf)),
b=—02L. (5.26)

e is a unit vector parallel to the straight-line trajectory and tfis the total time of the task.
The speed v(t) and the acceleration a(r) of the end-effector trajectory are given by the

following equations:

v(:)=b(1—cos(2—:‘f))

a()="2sin™), (5.27)
Yy
which ensure zero boundary conditions on the velocity and acceleration of the end-

effector.
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The initial position of the end effector is x,=(0.35355, 0.35355)T (m). The desired
final position is xp= (0.5664, 0.5664)T(m). The following parameters are used for the
trajectory:

tj=2.0s

a(t)=0.3m
b=0.15m/s. (5.28)

The tracking error of the end-effector trajectory cannot exceed the maximum allowable
tracking error ¥ which is chosen to be 1% of the total distance traversed by the end-

effector. Therefore, we can constrain tracking performance index /; by the following
inequality:

n o<y, (5.29)

where ¥=0.003m. The maximum torque available at each actuator is 0.15N-m.

According to the optimal trajectory framework developed in Section 4.4, we will
first determine whether a feasible trajectory can be obtained for the given task
specifications. If the task specifications are not feasible, then we change the task
specifications such that a feasible trajectory may be obtained. Once a feasible trajectory
is achieved, then we can proceed to obtain an optimal motion plan by using the procedure
described in Section 4.5.

Based on the above rationale, we will investigate the following two cases:
e Case 1. Finding a feedback-controlled feasible trajectory with u,,, =
[0.15,0.15,0.15)T (N-m) which satisfies Eq. (5.29).

¢ Case 2. Obtaining a feedback- controlled optimal trajectory to minimize the
peak magnitude of the base force.

The results of the above two cases are tabulated in Table 5-2.

5.5.1 Case Study 1: Obtaining a Feasible Trajectory
In this case study, we want to obtain a feasible trajectory under the task
specifications given by (5.28), (5.29) and the specified actuator constraints.

Using the procedure outlined in Section 4.6.1, we can obtain the optimal control
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Case | Problem Results Summary
e Find a feasible trajectory: | e Acceptable tracking performance | o A feasible trajectory
min 7, is obtained. 7;=0.0006m was obtained.
with (see Fig. 5.2 (a.b))
u_,,=(0.150.15 0.15]T(N-m). | ® Actuator torques do not
violate the actuator
constraints.

¢ peak torque = 0.078N-m.
(see Fig. 5.2 (d))

e Obtain an optimal trajectory | ® Peak tracking error=0.0017m. ¢ An optimal trajectory
to minimize base force: (see Fig. 5.3 (b)) was obtained that
minl,=1 e Optimal peak base force=0.29N | minimizes the peak
subject o (see Fig. 5.3 (c)) magnitude of base force
I,y e actuator torques are by sacrificing the
v=0.003m below U, tracking performance.
Table 5-2  Summary of Results

parameter vector Pc' and optimal joint trajectory parameter vector Pj' for the tracking
performance optimization problem posed in Eq. (4.38) with u,,,.=[0.15 0.15 0.15]T (N-

m). To ensure that a local minimum solution was not obtained, several initial values of P

were used to obtain P*.

The optimal solution P* was given by: P* = [P;"T P,"T] = [-7.999 3.009 4.003
1.0312 1.0018 0.9985 1.0027 19.999 20.000 20.000]T. The results for this case study are
shown in Figs. 5.2 (a-d).

The actual end-effector trajectory and the tracking errors are shown in Figs. 5.2 (a,b).
From these results, we observe that the maximum tracking error (0.0006m) i, less than
the maximum allowable tracking error (0.003m). Therefore, the trajectory is acceptable
and it is a feasible trajectory. Furthermore, as shown in Fig. 5.2(d), the joint torques are
all below the actuator constraints. This shows that our motion planning framework is
capable of finding a feasible trajectory to satisfy the tracking performance requirement
and the actuator constraints. Also, in Fig. 5.2(c), the joint trajectories are plotted. Note
that the angular displacement g; of the first joint variable is very small relative to the

angular displacement of either the joint variable g, or g;.
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5.5.2 Case Study 2: Obtaining Minimum Base Reactions Trajectory

Recently, redundant manipulators such as the Oak-Ridge arm, which has seven
degrees of freedom (one degree of kinematic redundancy) have been proposed to be used
in space to provide dexterity and obstacle avoidance ability [21]. In using a manipulator
in microgravity environments, one has to consider the problem of minimizing the
magnitude of the force and the moment exerted by a manipulator on its base as it
performs a task. One reason for minimizing, and if possible eliminating, the base
reactions is that high base forces and moments could disturb other tasks or experiments in
the vicinity of the manipulator. The problem that we are interested in differs from the
study by Longman, [25], in which the base reactions are compensated (instead of being
minimized) by modifying the desired joint-space trajectories using a special set of

kinematics equations that account for base motion caused by the base reactions.

The task of a redundant manipulator used in space can be divided into a primary goal
and a secondary goal. The primary goal of a manipulator is to accomplish the end-
effector motion specified by the user. While the manipulator tracks the trajectory, base
force and base moment denoted by f, and n, are transmitted to the base. Since there is
freedom in the joint-space trajectory, we can exploit this freedom to accomplish the
secondary goal - reducing the magnitudes of the base reactions. The dynamic equations
which describe the forces and moments transmitted to the base of a manipulator are given

in Appendix B.

In this case study, we will obtain an optimal motion plan that minimizes the

magnitude of the base reactions while satisfying the tracking requirement.

To avoid undesired large magnitudes of base force and base moment, we will use the

following performance index as a measure of the magnitudes of the base reactions:
12=W1]f+W21m, (530)
where w; and w, are the weighting factors and l;and I, are defined as follows:

If=max N
I,=max (In). (5.31)
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In the above equations, / and I, are the peak magnitude of the base force f, and the peak
magnitude of the base moment n,, respectively. In this example we will study the
problem of minimizing the peak magnitude of the base force. Therefore, the weighting
factors in Eq. (5.30) are w;=1.0 and w,=0.0.

With the above performance index (Eq. (5.30)), one can then pose and solve the
following optimization problem to obtain the optimal motion plan:
min 12(P)=lf
subject to:
1,(P)<y=0.003m. (5.32)
The optimal solution P* of the above optimization problem yields the optimal
trajectory and corresponding feedback control strategy. The simulation results are shown

in Fig. 5.3 (a-d).

The actual end-effector trajectory and the magnitude of the tracking error are shown
in Fig. 5.3 (a,b). From these results we observe that the maximum magnitude of the
tracking error is 0.0018m which is larger than that of the feasible trajectory (obtained in
Case 1). The magnitude of the base force of the optimal trajectory and the feasible
trajectory are compared in Fig. 5.3 (c). The dotted line is the magnitude of the base force
of the feasible trajectory and the solid line is the magnitude of the base force of the
optimal trajcclory. One can see that the peak magnitude of the base force of the optimal
trajectory is 30% less than that of the feasible trajectory. Furthermore, as shown in Fig.
5.3 (d), the joint torques are all below the actuator constraints. The maximum magnitude

of the actuator torque is 0.12N-m.

5.6 Summary

In this chapter we demonstrated the application of the unified approach to planning
motions for non-redundant manipulators. The Pseudo-Inverse Redundancy Resolution
Approach was found to be particular well suited for our motion-planning framework.
Finally we showed how the unified approach could be used to plan feedback-controlled
motions which minimize the magnitude of the reactions transmitted to the base of a

manipulator.
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Chapter 6

Special Topics

6.1 Introduction

In this section, we will discuss some special topics related to motion planning of
manipulators. In Section 6.2, we develop and apply a procedure for evaluating the
effectiveness of kinematic redundancy. In Section 6.3, we examine some of the
implementation issues which are important in motion planning such as sensitivity, local

minima, and the number of parameters needed to parameterize a trajectory.

6.2 Evaluation of Effectiveness of Kinematic Redundancy

We first establish the need for defining suitable compatibility criteria for comparing
the performance of alternative manipulator types. These compatibility criteria form the
basis for a procedure which can be used to systematically evaluate the effectiveness of
kinematic redundancy. The procedure is then applied to show that kinematic redundancy

does in fact minimize base reactions.

6.2.1 Is kinematic redundancy useful in minimizing base reactions?

In the literature, many studies have been conducted to explore the utility of
kinematic redundancy in various applications. In most of these studies, no attempts have
been made to evaluate the effectiveness of using kinematic redundancy to improve the
dynamic performance of a manipulator. In fact, most of these studies are conducted
based on the following scenario: For a given redundant manipulator, find the optimal
joint trajectory that achieves the primary goal of tracking a specified end-effector
trajectory and an additional secondary goal.
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A basic question which must be answered in using redundant manipulator is the
following: Is the addition of redundant degrees-of-freedom to a kinematic structure
really beneficial? As stated before, the advantage of using redundant manipulators lies in
the fact that there are an infinite number of joint trajectories for a given end-effector
trajectory. However, one cannot overlook the following trade-offs of adding more
degrees of freedom. The complexity of the trajectory planning problem increases as the
degree of redundancy increases. With additional hardware in the form of links, motors,
and sensors, the overall system complexity and cost are increased. In view of these trade-

offs, there is a need to justify the effectiveness of a redundant manipulator.

In the following example, we will illustrate some of the issues one has to consider

when evaluating the performance of a redundant manipulator.

Assume that we are evaluating the design of a planar 3 d.o.f. manipulator with the
following physical dimensions: I;=l,=I3=0.5m and m;=my=m3;=1.0kg. The issue of
interest is whether the use of a 3 d.o.f redundant manipulator (with one degree of
redundancy) is more effective in reducing base reactions than a 2 d.o.f. non-redundant
manipulator. Using the framework we developed in Chapters 4 and 5, we can obtain the
optimal base reaction for the redundant manipulator. But, the following two equivalent
questions would still remain unanswered: (1) Do the optimal base reactions tell us
anything about the effectiveness of using kinematic redundancy in minimizing the
magnitude of the base reactions? (2) If we add a degree of redundancy to a non-redundant

manipulator, will it help reduce the magnitude of the base reactions?

To answer the questions just raised, one might try to compare the performance of
kinematic structures with different degrees of freedom. For the case of the base reaction
minimization problem that we discussed, we would compare a 2 d.o.f. non-redundant
manipulator with a 3 d.o.f redundant manipulator both of which are shown in Fig. 6.1 (for

the non-redundant manipulator, /;=l,=0.5m and m;=m,=1.0kg).

Assume that both these manipulators must track a prescribed straight-line trajectory.
The open-loop base reaction profiles are shown in Figs. 6.2 (a,b). From the non-
redundant manipulator base reaction profile (Fig. 6.2), we can see that the peak force is
052N and the peak moment is at 0.13 N-m. Also, from the redundant manipulator base
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VS.

Fig 6.1 Comparison of Incompatible Non-redundant and Redundant Manipulators

reaction profile, we can observe that the peak base force is about 0.4 N and the peak base
moment is around 0.23 N-m. From these profiles, one can see that the peak magnitude of
the base moment of the redundant manipulator is higher than that of the non-redundant
manipulator while the peak magnitude of the base force of the redundant manipulator is
lower than that of the non-redundant manipulator. From these results, it is tempting to
conclude that the manipulator with kinematic redundancy does not reduce the base
moment. Furthermore, in view of the trade-offs associated with using redundant

manipulators, one would probably conclude that the non-redundant manipulator should

be used instead of the redundant manipulator.

The problem with the above comparison lies in the incompatibility of the kinematic
structures that we chose to compare. For example, the redundant manipulator shown in
Fig. 6.1 is much larger and heavier than its non-redundant counterpart. It is obvious that
one can always choose a smaller and lighter non-redundant manipulator for comparison
with a redundant manipulator and conclude wrongly that the use of the kinematic
redundancy is not effective in reducing the base reactions. In order to draw accurate

conclusions it is necessary to have a procedure for evaluating the effectiveness of using
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kinematic redundancy to enhance the dynamic performance of a manipulator.

6.2.2 Compatibility Criteria for Performance Comparison

The two manipulators (kinematic structures) that we choose to compare can be
denoted by KX; and X where the subscripts i and j refer to the number of degrees of
freedom of the two manipulators. In general, i and j are either greater than or equal to the

dimension of the task space, n.

We will first establish the compatibility criteria. There are three requirements that
we are concerned with: (1) task compatibility; (2) geometric compatibility; (3) mass
compatiblity. The task compatibility requirement demands that the two manipulators
perform the same class of end-effector tasks. The geometrical compatibility guarantees
that the sizes of the kinematic structure and the class of tasks that can be performed by
these two manipulators are the same. The mass compatibility requirement simply ensures

that the weights of the two manipulators are equal.

By task compatibility, we mean that the Task Specifications of the end-effector
trajectory for the two manipulators are the same. For example, if the end-effector
trajectory is of type II (x specified in space but not in time.), then the following equation
has to be true:

[x(o)] K= [x(o0)] K; O<a<a,,.. 6.1)

where « is the arc length of the curve that the end-effector must track. In the above

equation, the function describing arc length for manipulator K}, (a(t))x , is not necessarily

the same as its counterpart for the manipulator K i (o(t))g . The above criterion enables us
J

to describe a common task for both manipulators to perform.

To ensure geometrical compatibility, the basic requirement is that the workspaces of
the two manipulators must be the same. If we let W; denote the workspace of X, then we
can define the elements of W; as a set of points that are inside or on the boundary of W,.

Mathematically, W; can be expressed as

Wi= {x=(xlvwxn)Tlx=f(q), for qmin<q<qmax}i (62)
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where flg) is the forward kinematic equations of K; and g, and g, are vectors
denoting joint limits of X;. The ideal geometrical compatibility condition for the two

manipulators is as follows:

If W; equals Wj, then K; is geometrically compatible with KJ

With this compatibility condition, one can determine quite easily if two manipulators
are geometrically compatible with each other. For example, as shown in Fig. 63, K, is
obviously geometrically compatible to K3 as W, (the set of points inside and on a circle
of radius 1) is equal to W;. From this example, one might be tempted to state that the
condition of compatibility implies that the sum of the link lengths of X, must be equal to
the sum of the link lengths of K3. However, as shown in Fig. 6.4, we see that the latter
condition is obviously not true. The manipulator shown in Fig. 6.4(a) is not
geometrically compatible to the one shown in Fig. 6.4(b) even though the sum of the link
lengths for both manipulators are the same. (The workspace W3 has a "hole" in the center
which is absent in W,.) In general, for planar manipulators, it is possible to obtain two
geometrically compatible manipulators by inspection. However, for spatial mechanisms,
one may have to resort to computer-aided software to find two compatible kinematic
structures. If one cannot find two perfectly compatible kinematic structures, then the
next best would be for them to be almost compatible. In many problems, the two
manipulators shown in Fig. 6.4. may be considered to be sufficiently compatible for all
practical purposes if the radius of the "hole" in the center of W; is small compared to the

outer radius of Wj.

The third compatiblity condition, mass compatibility, can be obtained by imposing
constraints on the total masses of the two manipulators. This condition can be simply

stated as

j [
(gm,.),(f(;m,.)xl. (6.3)

In applications in space, this mass equality constraint is crucial as there is always a

constraint on the total permissible weight of a payload.

Using the above compatibility conditions we can develop a general procedure for
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evaluating the use of kinematic redundancy in enhancing the dynamic performance. This

procedure is developed with the following scenario in mind:

An engineer has a manipulator design in mind. He would like to determine whether
the addition of a single degree of freedom to his current design will improve the
dynamic performance of the existing manipulator.

The procedure can be stated as follows:
1. Based on the current design (K;), compute the workspace W; and the total
mass (mT)j of the manipulator Kg

2. Based on the workspace of K, obtain a set of link lengths of the
manipulator X, ; that would satisfy W; =W, ;.

3. From the mass compatibility conditions (Eq. (6.3)) obtain a set of masses
(m, i=1,.., j+1)for manipulator Kj+1.

4, Define the type of tasks for K f and K i+l based on the task compatibil_ity
criterion.

5. Compute the optimal joint trajectories for X; and K i+ 1O optimize some
desired performance criterion (or criteria). T’hen, obtain the values of the
performance indexes for K; and K;,;, respectively. Comparison of the
performance indexes for K; with those for K, ; could then be used as a fair
basis for evaluating the eft,"cctivcncss of adéing a degree of redundancy to
K;

j
6.2.3 Illustrative Example

In the base reaction minimization problem studied in Chapter 5, we obtained the
optimal joint trajectory for a redundant manipulator. In that study, we used the freedom
in the joint motion to minimize the base reactions of a redundant manipulator. We did
not really question the effectiveness of kinematic redundancy in minimizing the base
reactions. In the following example, we will illustrate the use of the above procedure to
systematically examine the issue of whether kinematic redundancy improves or degrades

dynamic performance.

To examine this issue, we will first assume that we have an exisiting non-redundant
manipulator to accomplish the prescribed task as shown in Fig. 6.6(a). The non-
redundant manipulator X, is a 2 d.o.f manipulator with link length of 0.5m and mass of
0.5kg for each link. The center of mass for each link is assumed to be at the middle of the

link. The moment of inertia for link i is assumed to be a function of the mass m; and the
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link length /; of link i. We wish to examine the improvement one would get by having an
additional degree of freedom. The following steps correspond to the procedure described
in Section 6.2.2.

(1) Following the procedure outlined in Section 6.2.2, we will first compute the
workspace, W,. For a planar non-redundant manipulator with equal link lengths, the
workspace is a complete circle with radius of 7.0m. The total mass of the manipulator is
2.0 kg.

(2) Next, from the workspace constraint, W,=W;, the total length of K, must be
equal to 1.0m:

3
I‘= I.Om. (6'4)
For a planar 3 d.o.f. manipulator with a voidless workspace, the following conditions

must be true :

1, $Ly+l;, (6.5)

To satisfy the above two equations, one can select a specific 3 d.o.f. redundant kinematic
structure from an infinite number of possible kinematic structures. To simplify matter,
we let [y=13=0.25m; 1; is then equal to 0.5m. Now, we have computed the geometrical

parameters for the 3 d.o.f. manipulator, K3 which is compatible with XK.

(3) We know the total mass is equal to 2.0kg. Assuming that the cross-sectional area
and material of each link is the same and neglecting the actuator mass, the mass of each

link is proportional to its length, m;=1.0kg, my=m3=0.5kg.

(4) The task of the end-effector of K, and K is the same as the straight line task of
the example in Chapter 5. |

(5) Using the open-loop analysis, we can obtain the optimal base reactions profile of
the 3 d.o.f. redundant manipulator (K ;) with the link lengths and link masses computed in

Steps (2) and (3).

Repeating Steps (1-5), we can also find a compatible 4 d.o.f. planar manipulator with
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2 degrees of kinematic redundancy. In Fig. 6.6(b,c), we show the base reaction profiles
of the 2 d.of., 3 d.of., and 4 d.o.f. planar manipulators (as depicted in Fig. 6.6 (2))
performing the same straight-line task from point A to B. The peak magnitude of the base
force of the 3 d.o.f. manipulator is 0.3N, about 40% less than that of the 2 d.of.
manipulator. The peak magnitude of the base moment of the 3 d.o.f. manipulator is
0.12N-m, about 23% less than that of the 2 d.o.f. manipulator. For the 4 d.o.f. planar
manipulator, we see drastic reduction in the magnitudes of the base reactions. The peak
magnitude of the base force for the 4 d.o.f. redundant manipulator is only 20% of the
peak magnitude of the non-redundant manipulator while the peak magnitude of the base
moment is 36% of the peak magnitude of the non-redundant manipulator. One can also
note that the base reactions of the 3 d.o.f. and 4 d.o.f. manipulators at the beginning and
the end portions of the trajectory are of the same magnitude. From 0.3s to 1.9s, the base
reactions of the 4 d.o.f. planar manipulator is significantly smaller than that of the 3
d.o.f. manipulator, but more oscillatory. From these results, one can conclude that by

increasing the degree of kinematic redundancy, the base reactions can be reduced quite

drastically.

6.3 Some Implementation Issues in Motion Planning
In the implementation and application of the unified motion planning, the following

questions naturally arise:

1. How many parameters should be used to represent the joint trajectories?
2. To what parameters is the performance index most sensitive?

3. What is the "landscape" of the optimization problem in the optimization
parameter space?

These questions will be addressed in the following subsections.

6.3.1 Appropriate Number of Parameters

In using the parameterization scheme developed in Chapters 4 and 5, one has to
determine the number of parameters used in the parameterization of the independent
variables. We will examine this important topic in the context of the base reaction

minimization problem studied in Chapter 5.

In the base reaction minimization problem, the optimal joint motion was obtained by
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using three independent parameters to represent the joint trajectory. The logical question
one can ask is the following: What is the minimum number of parameters necessary to
represent the optimal joint motion? The answer to this problem is problem dependent. In
order to gain some insight into the answer to this question, one must increase the number
of parameters used in the representation scheme and determine whether the resulting

solution is better.

To study this issue for the base reaction minimization problem, we compared the
results of a three parameter representation scheme versus a six parameter scheme
representation. The results of the two schemes shown in Figs. 6.6 (a,b) are almost
identical which strongly indicates that three parameters are sufficient for obtaining an

optimal solution (in this case).

6.3.2 Sensitivity
In this section, we examine the sensitivity of the base reactions with respect to the
joint trajectory parameters (P;) for the base reaction minimization problem (of the 3 d.o.f.

planar manipulator) examined in Chapter 3.

The parameters of the joint trajectory are denoted by vector P; which consists of the
parameters used in the joint-space trajectory parameterization and the initial joint
configuration parameter ¢. In this example, we will use a polynomial of sixth order to
represent the scalar s; of Eq. (5.24). The independent variables in the representation of s,
are a;, a,, and ag;also one is free to choose 6. Two possible candidates for G are the
orientation of the end-effector (o = q;(0) + g,(0) + q3(0)) and the joint variable of the
first link (6 = q;(0)). In our analysis, we choose the orientation of the end-effector, ¢ =

q;(0) + q5(0) + q3(0), as an independent variable.
In vector form, we can express the parameter vector P; as:
P=[a; a, a3 ol (6.6)

To determine the sensitivity of a performance index J with respect to the parameters,

- - . al
we perturb the optimization parameters and compute the sensitivity coefficients »®
4

which can be numerically approximated by the following equation:
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al I(Pj(l), see ,Pj(k)+Aij...,PJ(D)-I(PJ(]),...,Pj(k) ..,Pj(l))

6.7)
k k
an( ) A Pj

where Pj(k) denotes the k' element of P; and I represents the order of the polynomial used

in representing s;.

Using the above equation, we will examine the performance index /, that we used in
the base reaction minimization problem of chapter 5. The sensitivity analysis is
performed at the optimal solution Pj’ = [0.974 0.6632 0.3128 -1.0]. Using Eq. (6.7), we
obtain the following sensitivities for /, with respect to the optimization parameters:

dl,

—==0.02
aal

ol

—2-002
as

al,

——=0.01
aa3

dl,
—==0.39.
0o

From the above sensitivities, we see that the initial joint configuration parameter © is the
most sensitive parameter. In general, it is useful to obtain sensitivities when solving an
optimization problem since these sensitivities tell us about the behavior of the function in

the vicinity of a solution and are also useful in identifying the critical parameters.

6.3.3 Landscape of the Optimization Problem

The purpose of this subsection is to give some insight into the "landscape” of the
optimization problem. The term landscape refers to the graph of the performance index
versus the most sensitive parameters in the optimization problem. We will use the base

reaction minimization example to illustrate the process of determining the landscape of

the problem.

To generate the landscape for the base reactions, we will investigate the following

two cases:
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1. Minimizing peak base force using If = max [f,/.

2. Minimizing peak base moment using I,, = max [n /.

The profiles of the optimal peak base force and optimal peak base moment are
plotted as functions of the orientation of the manipulator in Fig. 6.7. From this figure one
can note that the minimization of the base force is somewhat correlated to the
minimization of the base moment. The valleys of the locally optimal peak base force and
the locally optimal peak base moment correspond to approximately the same orientation

angles. This shows that when one minimizes peak base force, the peak base moment is

also simultaneously minimized.
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Furthermore, from Fig. 6.7, we can investigate the trade-offs one has to consider
when optimizing the base reactions. If one wants to minimize only the magnitude of the
base moment we would want to obtain the solution corresponding to B in Fig. 6.7. For
minimum value of peak base force, one would like to obtain the solution corresponding
to point A in Fig. 6.7.

As mentioned earlier, one of the trade-offs in employing extra degrees of freedom is
that the optimal trajectory may not be attainable. To illustrate this point, the optimal Ifis
plotted as a function of the initial orientation angle © of the end-effector and the initial
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joint angle of link 1, ¢,(0) (sce Fig. 6.8) for a 4 d.o.f. planar manipulator with two
degrees of redundancy. The 3-D plot shows that there are numerous local minima.
Therefore, more initial guesses should be used for obtaining the optimal trajectory for the
globally minimum solution. We have examined the landscape of the optimization

problem to gain some feel for the "goodness"” of the optimal solution.

6.4 Summary

In this chapter, we have developed a procedure for evaluating the effectiveness of the
use of kinematic redundancy in improving the dynamic performance of a manipulator.
The framework enables one to choose two compatible manipulators for proper
comparison. In the base reaction example, we have illustrated that without this
framework, one may compare manipulators that are not compatible and draw incorrect
conclusions regarding the effectiveness of the kinematic redundancy. We then showed
that by increasing the degree of kinematic redundancy, the base reactions of a planar
manipulator can be reduced quite drastically, but the trade-off is that the global optimal
trajectory may be very difficult to obtain. In addition, we also examined the issues of
how many parameters should be used in representing the independent variables in the
optimization problem as well as the sensitivity of the performance index to these
parameters. For the base reaction minimization problem of a 3 d.of. redundant
manipulator, we found that the initial end-effector orientation ¢ is the most sensitive

parameter.



Chapter 7

Conclusions and Future Work

7.1 Summary and Conclusions

We have developed a unified motion planning approach for robotic manipulators.

As we have seen, this approach has the following features:

1. It simultaneously plans the trajectory for the manipulator and synthesizes a
feedback control strategy which does not violate actuator constraints.

2. Both non-redundant and redundant manipulators are addressed in the same
framework.

3. The approach is set in an optimization framework which allows the analyst
to plan motions which optimize dynamic performance by exploiting any
available freedom in the end-effector and/or joint trajectories.

In Chapter 4 we demonstrated the application of the unified approach to planning
feedback-controlled minimum-time motions for a 2 d.o.f. non-redundant manipulator.
We have also seen how the unified approach may be used as a tool for quantitatively
studying the trade-off between tracking error and any other measure of dynamic
performance. In Chapter 5 we showed how the unified approach could be used to plan
motions which minimize the magnitude of the reactions transmitted to the base of the

manipulator, a problem of considerable importance in Space Robotics.

We have thus clearly demonstrated the power of the unified motion planning

approach in planning realizable motions for robotic manipulators.

One issue of great interest to a designer is the evaluation of the effectiveness of

kinematic redundancy. With the systematic procedure described in Chapter 6 we are able
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to compare different kinematic structures in a meaningful fashion. In the planar
examples that we studied, we found that by increasing the degree of kinematic
redundancy, we are able to reduce the base reactions quite drastically. We also pointed
out one major disadvantage of increasing the number of excess degrees of freedom - the
global optimal solution may be difficult to obtain due to the increase in the number of

local minima.

There are some limitations on the proposed unified motion planning approach. The
unified approach is optimization-based. Therefore, it also contains all the problems
associated with the solution of non-convex non-linear programming problems. These
problems include the choice of an appropriate optimization technique for the problem,
local minima, the selection of the proper initial values for the parameters, and the choice
of appropriate convergence criteria. Another limitation of this approach is that one has to
choose a small enough integration time step for obtaining the correct simulation results;
the choice of the integration time-step depends on the parameter vector P. In this thesis,
we use a variable Kutta-Merson algorithm of MATRIXXTM which chooses an
appropriate integration time-step based on the local error tolerance criterion. However,
using this algorithm can lead to very slow simulation and consequently, planning a
trajectory using this approach for a complex manipulator can take up to 10 hours on a

Micro-Vax running under the VMS4.7 Operating System.
7.2 Future Work

7.2.1 Orientation

The unified motion planning approach in its current form can only be used for
manipulator tasks that do not impose any orientation requirement. To extend this
approach for a general task, we can expand the Jacobian equation in the following way to

map the joint velocity vector ¢ to a generalized velocity ¥
x =74, (7.1)
where ¥ = [# ®]T and o is the angular velocity of the end-effector in the base frame.

With the above generalized velocity equation we can then address the orientation issue in

a relatively straightforward fashion.
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7.2.2 Kinematic Redundancy

The parameterization of the k vector is still not computationally efficient for
manipulators with more than one degree of kinematic redundancy since we parameterize
all the elements of k. One possible improvement is to obtain the basis vectors that
represent the nullspace of J and use Eq. (5.12) to reduce the number of parameterized
variables from m to m-n. A simple procedure for obtaining a basis for the nullspace of a
matrix is discussed in [41]. Using this procedure, one can then obtain the column vectors
of the matrix @ in Eq. (5.12). The coefficients s;, corresponding to these column vectors,

can then be parameterized using the approach developed in Section 5.3.

7.2.3 Kinematic Constraints

In our approach, kinematic constraints are not considered. Kinematic constraints
such as joint limits and obtacle constraints present great challenges in motion planning
problems. These constraints are very difficult to incorporate in the unified motion
planning approach without increasing the complexity of the optimization problem. Most
approaches proposed in the literature for handling kinematic constraints are not suitable
for the unified motion planning framework. Therefore an important issue that needs to be
addressed is, how the motion planning approach should be modified to include kinematic

constraints.

With the incorporation of the above considerations, the unified motion planning
approach would be an extremely powerful tool for planning motions for manipulators

operating in complex environments.



Appendix A

Multi-Criterion Optimization Example

This multi-criterion optimization problem is taken from (Osyczka, 1984,pp. 31) [29].

min fj(x)=x,24+x,2+12(x;+x,)
Hx)==x;x,
subject to
£1(x)=—0.5x,2+5x,—x,— 620
8r(X)=—x,2+6x;—x,2+14x,-4220
83(x)=-x,2+16x;—x,2+6x,—4820

The feasible space of the optimization variables Xg.,;pe i shown in Fig. A.1. The
space of the performance indexes (f; and f,) are shown in Fig. A.2. The optimal solution

x" is the straight-line x; = x,. The Pareto optimal solutions are all the points of the lower
boundary of the hatched area.

10 ¢
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Fig. A.1: Feasible Space of x
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Fig. A.2:  Space of Performance Indexes

Using the trade-off approach, the multi-criterion optimization problem is converted
to a single criterion optimization problem.
min f;(x)=x;2+x,2+12(x;+x;)
subject to

g1(x)=—0.5x,2+5x;—x,—620

g7(X)==x,2+6x; —x,2+14x,—-4220

g3(x)=—x12+ 16x1—x22+6x2-4820

HX)==x1x,<p

The optimal solutions for different values of p are tabulated in Table A-1. The
above problem was also solved using the weighting objective method which minimizes a
weighted sum of f; and f, with weighting factors w; and w,. For this example, the
weighted objective method has difficulty obtaining the Pareto optimal solutions. The
optimal solution which is obtained by the weighted objective method is always x*=(3,3),
regardless of what values of w; and w, were used.



P x' f,x) |f,()
0 (33) 900 |[-9

-10 (3.163.16) | 95.89  |-10
-20 (4.474.47) [ 147.335| 20
-30 (5475.47)[191.45 |-30

Table A-1  Results of the Trade-Off Approach



Appendix B

Base Reaction Equations for a 3 d.o.f. Planar Manipulator

In this section, we derive the dynamic equations for the base reactions transmitted by the

manipulator while performing a task.

Considering a 3 d.o.f. planar manipulator, the magnitude of the base moment (n,) is

simply equal to the magnitude of the torque produced by the first joint.

It is easy to show that in microgravity condition, the force transmitted to the base is equal
to the sum of the inertia forces for all the links. Let the mass of link i be m; and the
position of the center of mass of link i with respect to a reference frame in the base be

X_ ;- For a manipulator of m degrees of freedom, the base force f,, is simply given by
fo=Y mX,; 8.1)
=1
where X ciisthe acceleration of center of mass of link i.
Using the Jacobian relation, the velocity of the center of gravity of link i, Xc,i’ is given by
X =J.;q (B.2)
where J ; is the Jacobian matrix that relates Xc,i and g.

Taking the time-derivative of above equation, the acceleration of the center of mass of

link i is simply given by

Xei= cid+dc i (B.3)
Substituting Eq. (B.1) in Eq. (B.3), f, can be expressed as

f,,=f;,m,-(lc i+ i) (B.4)
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Combining base force and base moment vectors, we can express Fy, as

- f — A5 .
F, (n‘j,) AG+B@g.4) (B.5)

where A=( Z"'.J,,- ), B is the collection of nonlinear terms in ¢, and M is the mass
1" row of M

matrix of a manipulator.

For a 3 d.of. planar manipulator, the base force vector has a x-direction component (f,),
and a y-direction component (fo)y. The base moment vector has only a z-direction
component, (n,),. Hence, the base reactions vector is given by

Fy = [ (), (fp)y ny),1T.

Let the elements of A be Aij’ (i=1,2,3) and (j=1,2,3). The expressions for Aij are:

Ap==lama sip3—lmssip—lomasip=lymas—lims)
A==l 3m3s193=mss p-lompsia

Ay3=lamssi;
Agy=lamyC1aztlymacipHlgmaciptlimyc Heymy )

App=l amacyp3tymacipH omacy)

Ap=lomscyn3
(B.6)

A31=11 lc3m3623+2121c3m3c3+211 12m3+211162m2c2+lc32m3
+ly2matl Zmat] 2y 41 2yl 2y 44

Asg=hylgmacoy 2l gmaca+lylomacy+hlgmacaH 37 my+ymy
+ o 2mytlytly
Ax3=l11 amacos+llysmacoz+ly amacy+ 3m;
Let the elements of B be denoted by B; and they are given by:
Bi=—{d32+2(d2+4))43+d1+4) Nl 3m3c 23~ Upms+
1omp)e oGy +ag)2—(ymyHymytl ymy e gy 2.
By=—[432+(245+41)43+d1+4)?) 3m381 25~
(Il amy)s o(Gy+G9) >l my+ my)ls 4y
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B3y=—[(4+43)*+2443+241420\1 33523~ (242934241 43+
439l cam3s3—(q2+241d) N bmasyda+241dh amasy: B.7)



Appendix C

Joint Acceleration Equation for
a 4 d.o.f. Planar Manipulator

The joint acceleration equation can be obtained by differentiating Eq. (5.9) with

Tespect to time.
G=Jg+J* e+ Wk+Wk (€.

where W=1-J%].

The derivative of W can be obtained as

W=—J+J-J*] (C2)
The Jacobian J is given by the following equations:

J11=1181-s127135123~1451234
Jor=hiepHhcatlsey3+iycya3s

J12==Ds 13135123 1451234

Jap=he1p+l3C123+4C1234

J13=~1351231451234

Ja3=13€193+14C1234

J14==1451234

.’24=I4C1234 (C3)

The derivative of the pseudo-inverse J* is given by
J+=JTQ+JTQ (C4)
where @ = (J JT)L.

The derivative of Q is given by the following equation:
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ad-l-bc(i: -z)’dd;j__bic);bé ” _Z)

a=Jy 24040 P4
b=Jy ot 120204 130234 14024
c=Jo1 11 #1423 13424014
d=J 212+J 222+J 232+J 242

The time derivatives of g, b, ¢, d can be expressed as follows:

a=2(J11J1 1+ 10012130134 1470 14)

b=Jy o+t 1202912020+ 1302313023 13023+ 14024

+.,14j24

é=Jyn I+t 194227 1223013423 13230 134 24 14+

d=2(y1J3 1+ p) 20+ 230 33+0 340 54)

The derivatives of the elements of the Jacobian matrix are:

Ji==l1c141=1261- 1361234123~ 1aC123491234
Jo1==1$1011p5 124127 1351239123~ 145123491234
J12=—he 12412~ 13¢1234125~ 14 123491234

T2 ==lys 12412~ Bs1239123 5123491234
J13==13c1239 123~ 123441234
Jo3==135123d125 LS 123491234

J14==l4C 123491234

J24==145123441234

(C.5)

(C.6)

(on))



Appendix D

Inverse Kinematic Equations for
a 3 d.o.f and a 4 d.o.f. Planar Manipulator

(1) 3 d.o.f. planar manipulators:

In our inverse kinematic equations, G=q;+¢,+43, is chosen to be the independent

variable. Using the following equations, the joint variables q;, g5, 3 can be obtained.

(x1=l3¢0)2 + (ay—l356)2 1,2~ 1,2

“2 TN D.1)
5y=1 sqre(1—c,2) D.2)
gr= ATAN2 (82,C2) (D3)
ky=li+lhc, (D.4)
ky=15, (D.5)
k3=xl—l3c‘0' (D6)
k4 =1'2—I3 SC {D.7D
qy= ATAN2 (ky.k3)— ATANZ (kp,k) (D.8)
q3=0—q1— 92 (D.9)

(2) 4 d.o.f. planar manipulators:

In our inverse kinematic equations, 6=q;+],+q3+qy, and g; are chosen as the
independent variables. Using the following equations, the joint variables ¢,, ¢3, g4 can
be obtained.

xl:=x1—ll Cl
Xy =x5—1; 5, (D.10)
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(x) =14, €0)2+(xy —1456)2— 12152
2L, 1

C3=

s3=1 sqri( 1-¢32)

q3= ATAN2 (S3,C3)

kl = 12 + 13 C3

ky=l3s3

k3 =11’—I4 cO

k4 =X2,-I4 SO

g, = ATAN2 (ky.k3)— ATAN2 (kp.k;)

q42=q2 —4q
44=0-q1—492— 43

(D.11)

(D.12)
(D.13)
(D.14)
(D.15)

(D.16)
(D.17)
(D.18)

(D.19)
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